觀察如圖所示,根據(jù)其變化規(guī)律,可得圖形中第8個(gè)圖形中三角形的個(gè)數(shù)為_(kāi)_______個(gè).

答案:
解析:

  29個(gè).

  分析:看圖規(guī)律:第1個(gè)圖中有一個(gè)三角形,第2個(gè)圖中共有5個(gè)三角形,也就是多了4個(gè)三角形,而第3個(gè)圖中又多了4個(gè)三角形共9個(gè)三角形,由此可推測(cè)第n個(gè)圖中有(4n-3)個(gè)三角形.即當(dāng)n=8時(shí),共有三角形4×8-3=29(個(gè)).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、小剛同學(xué)動(dòng)手剪了如圖①所示的正方形與長(zhǎng)方形紙片若干張.
觀察與操作:
(1)他拼成如圖②所示的正方形,根據(jù)四個(gè)小紙片的面積之和等于大正方形的面積,得到:a2+2ab+b2=(a+b)2,驗(yàn)證了完全平方公式;即:多項(xiàng)式  a2+2ab+b2 分解因式后,其結(jié)果表示正方形的長(zhǎng)(a+b)與寬(a+b)兩個(gè)整式的積.
(2)當(dāng)他拼成如圖③所示的矩形,由面積相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多項(xiàng)式 a2+3ab+2b2 分解因式后,其結(jié)果表示矩形的長(zhǎng)(a+2b)與寬(a+b)兩個(gè)整式的積.
問(wèn)題解決:
(1)請(qǐng)你依照小剛的方法,利用拼圖分解因式:a2+4ab+3b2.(畫圖說(shuō)明,并寫出其結(jié)果)
(2)試猜想面積是2a2+5ab+3b2的矩形,其長(zhǎng)與寬分別是多少?(畫圖說(shuō)明,并寫出其結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、如圖所示,若將類似于a、b、c、d四個(gè)圖的圖形稱做平面圖,則其頂點(diǎn)數(shù)、邊數(shù)與區(qū)域數(shù)之間存在某種關(guān)系.觀察圖b和表中對(duì)應(yīng)的數(shù)值,探究計(jì)數(shù)的方法并作答.
(1)數(shù)一數(shù)每個(gè)圖中各有多少個(gè)頂點(diǎn)、多少條邊,這些邊圍出多少個(gè)區(qū)域并填表:
(2)根據(jù)表中數(shù)值,寫出平面圖的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間的一種關(guān)系;
(3)如果一個(gè)平面圖有20個(gè)頂點(diǎn)和11個(gè)區(qū)域,那么利用(2)中得出的關(guān)系可知這個(gè)平面圖有
30
條邊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小剛同學(xué)動(dòng)手剪了如圖①所示的正方形與長(zhǎng)方形紙片若干張.觀察與操作:
精英家教網(wǎng)
(1)他拼成如圖②所示的正方形,根據(jù)四個(gè)小紙片的面積之和等于大正方形的面積,得到:(a+b)2=a2+2ab+b2,驗(yàn)證了完全平方公式;即多項(xiàng)式a2+2ab+b2分解因式后,其結(jié)果表示正方形的長(zhǎng)(a+b)與寬(a+b)兩個(gè)整式的積.
(2)當(dāng)他拼成如圖③所示的矩形,由面積相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多項(xiàng)式a2+3ab+2b2分解因式后,其結(jié)果表示矩形的長(zhǎng)(a+2b)與寬(a+b)兩個(gè)因式的積.利用上述紙片,
解決問(wèn)題:
①請(qǐng)你依照小剛的方法,利用拼圖把a(bǔ)2+4ab+3b2分解因式(畫出圖形,并寫出其結(jié)果)
②探索:面積是2a2+5ab+3b2的矩形其長(zhǎng)與寬分別是多少?(畫出畫形,并寫出其結(jié)果)
③利用圖形面積解釋代數(shù)恒等式(a-b)2=(a+b)2-4ab(畫圖,并簡(jiǎn)要說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:022

(2002江蘇連云港)觀察如圖所示一組圖形,根據(jù)其變化規(guī)律,可得第10個(gè)圖形中三角形的個(gè)數(shù)為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案