【題目】已知反比例函數(shù)(0)與一次函數(shù)的圖像交于B,C兩點,一次函數(shù)圖像與y軸交于點A.

(1)當(dāng)k=3,a+b=4時,

①求B,C兩點的坐標(biāo);

②求△OBC的面積;

(2)當(dāng)k=1時,設(shè)BC兩點坐標(biāo)為 B(a,b)(a≥2)、C(c,d)(B、C不重合).

①求ac的值;

②設(shè)△OAC面積為,求b的函數(shù)關(guān)系式,并直接寫出的最大值.

【答案】(1)①(1,3)(3,1);②4;(2)①1;②,當(dāng)最大為.

【解析】

1)將k=3,a+b=4代入解析式建立方程求值即可;然后求出各點坐標(biāo)后按三角形面積公式計算即可

(2)根據(jù)題意,找出點與函數(shù)的關(guān)系,之后再進行代換變形,從而進一步得出答案

(1) (1,3)(3,1) =4

(2)①由題意可知ab=1,cd=1,c+d=a+b, ,

B,C不重合,∴c-a≠0,∴,∴ac=1.

②∵ab=1,cd=1,∴a=d,b=c.

a≥2,當(dāng)最大為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線為正比例函數(shù)的圖象,點的坐標(biāo)為,過點軸的垂線交直線于點,以為邊作正方形;過點作直線的垂線,垂足為,交軸于點,以為邊作正方形;過點軸的垂線,垂足為,交直線于點,以為邊作正方形,,按此規(guī)律操作下所得到的正方形的面積是

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50 cm,能從這塊鋼板上截得得最大圓得半徑為________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A1,1),B4,2),C3,4).

1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;

2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;并寫出點A2、B2、C2坐標(biāo);

3)請畫出△ABCO逆時針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點A3B3、C3坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB 是⊙O 的直徑,點 C 在⊙O 上,∠BAC46°,點 P 在線段 OB上運動.設(shè)∠APC,則 x的取值范圍為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙M經(jīng)過O點,并且與x軸、y軸分別交于AB兩點,線段OA、OBOAOB)的長是方程的兩根.

1)求線段OAOB的長;

2)若點C在劣弧OA,連結(jié)BCOAD,當(dāng)OC2CD·CB時,求點C的坐標(biāo);

3)若點C在優(yōu)弧OA上,作直線BCx軸于D,是否存在COBCDO相似,若存在,求出點C的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

1)(x+1)(x-2)=x+1 (2)x2+4x-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在Rt中,,點是斜邊的中點,,且,于點,聯(lián)結(jié)

1)求證:

2)當(dāng)時,求的值;

3)在(2)的條件下,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行鋼筆書法大賽,對各年級同學(xué)的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.

請結(jié)合圖中相關(guān)信息解答下列問題:

(1)扇形統(tǒng)計圖中三等獎所在扇形的圓心角的度數(shù)是______度;

(2)請將條形統(tǒng)計圖補全;

(3)獲得一等獎的同學(xué)中有來自七年級,有來自九年級,其他同學(xué)均來自八年級.現(xiàn)準(zhǔn)備從獲得一等獎的同學(xué)中任選2人參加市級鋼筆書法大賽,請通過列表或畫樹狀圖的方法求所選出的2人中既有八年級同學(xué)又有九年級同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊答案