(2013•萊蕪)如圖,等邊三角形ABC的邊長為3,N為AC的三等分點,三角形邊上的動點M從點A出發(fā),沿A→B→C的方向運動,到達點C時停止.設(shè)點M運動的路程為x,MN2=y,則y關(guān)于x的函數(shù)圖象大致為( 。
分析:注意分析y隨x的變化而變化的趨勢,而不一定要通過求解析式來解決.
解答:解:∵等邊三角形ABC的邊長為3,N為AC的三等分點,
∴AN=1.
∴當(dāng)點M位于點A處時,x=0,y=1.
①當(dāng)動點M從A點出發(fā)到AM=0.5的過程中,y隨x的增大而減小,故排除D;
②當(dāng)動點M到達C點時,x=6,y=4,即此時y的值與點M在點A處時的值不相等.故排除A、C.
故選B.
點評:本題考查了動點問題的函數(shù)圖象,解決本題應(yīng)首先看清橫軸和縱軸表示的量,然后根據(jù)動點的行程判斷y的變化情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•萊蕪)如圖,在⊙O中,已知∠OAB=22.5°,則∠C的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•萊蕪)如圖,矩形ABCD中,AB=1,E、F分別為AD、CD的中點,沿BE將△ABE折疊,若點A恰好落在BF上,則AD=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•萊蕪)如圖,有一艘漁船在捕魚作業(yè)時出現(xiàn)故障,急需搶修,調(diào)度中心通知附近兩個小島A、B上的觀測點進行觀測,從A島測得漁船在南偏東37°方向C處,B島在南偏東66°方向,從B島測得漁船在正西方向,已知兩個小島間的距離是72海里,A島上維修船的速度為每小時20海里,B島上維修船的速度為每小時28.8海里,為及時趕到維修,問調(diào)度中心應(yīng)該派遣哪個島上的維修船?
(參考數(shù)據(jù):cos37°≈0.8,sin37°≈0.6,sin66°≈0.9,cos66°≈0.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•萊蕪)如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點E為AB的中點,連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時,四邊形DCBE是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案