已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.

(1)如圖①,當四邊形EFGH為正方形時,求△GFC的面積;

(2)如圖②,當四邊形EFGH為菱形,且BF=a時,求△GFC的面積(用a表示);

(3)在(2)的條件下,△GFC的面積能否等于2?請說明理由.

 

【答案】

(1)10;(2)12-a;(3)不能

【解析】

試題分析:(1)過點G作GM⊥BC于M,根據(jù)正方形的性質(zhì)及同角的余角相等可證得△AHE≌△BEF,同理可證:△MFG≌△BEF,即可得到GM=BF=AE=2,再根據(jù)三角形的面積公式求解即可;

(2)過點G作GM⊥BC于M.連接HF,根據(jù)平行線的性質(zhì)可得∠AHF=∠MFH,∠EHF=∠GFH,即得∠AHE=∠MFG,再結(jié)合∠A=∠GMF=90°,EH=GF可證得△AHE≌△MFG,即可得到GM=AE=2,再根據(jù)三角形的面積公式求解即可;

(3)若S△GFC=2,則12-a=2,解得a=10.此時在△BEF中,根據(jù)勾股定理求得EF的長,在△AHE中,根據(jù)勾股定理求得AH的長,由AH>AD,即點H已經(jīng)不在邊AB上,故不可能有S△GFC=2.

(1)過點G作GM⊥BC于M

在正方形EFGH中,∠HEF=90°,EH=EF,

∴∠AEH+∠BEF=90°,

∵∠AEH+∠AHE=90°,

∴∠AHE=∠BEF,

又∵∠A=∠B=90°,

∴△AHE≌△BEF.

同理可證:△MFG≌△BEF,

∴GM=BF=AE=2,

∴FC=BC-BF=10,

則S△GFC=10;

(2)過點G作GM⊥BC于M.連接HF

∵AD∥BC,

∴∠AHF=∠MFH,

∵EH∥FG,

∴∠EHF=∠GFH,

∴∠AHE=∠MFG.

又∵∠A=∠GMF=90°,EH=GF,

∴△AHE≌△MFG.

∴GM=AE=2.

∴S△GFCFC?GM=(12-a)×2=12-a;

(3)△GFC的面積不能等于2.

∵若S△GFC=2,則12-a=2,解得a=10.

此時,在△BEF中,EF=,

在△AHE中,AH=>12,

∴AH>AD,即點H已經(jīng)不在邊AB上,故不可能有S△GFC=2.

考點:四邊形的綜合題

點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知,在矩形ABCD中,AB=3,AD=4,以點A為圓心,r為半徑畫圓,矩形的四個頂點恰好有一個在⊙A外,則半徑r的范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•臨沂)已知,在矩形ABCD中,AB=a,BC=b,動點M從點A出發(fā)沿邊AD向點D運動.
(1)如圖1,當b=2a,點M運動到邊AD的中點時,請證明∠BMC=90°;
(2)如圖2,當b>2a時,點M在運動的過程中,是否存在∠BMC=90°,若存在,請給與證明;若不存在,請說明理由;
(3)如圖3,當b<2a時,(2)中的結(jié)論是否仍然成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北塘區(qū)一模)已知,在矩形ABCD中,AB=4cm,BC=3cm,點M為邊BC的中點,點P為邊CD上的動點(點P異于C,D兩點),點P從點C出發(fā),以2cm/s的速度,沿CD作勻速運動.連接PM,過點P作PM的垂線與邊DA相交于點E(如圖),設點P運動的時間為t(s)
(1)DE的長為
-
8
3
t2+
16
3
t
-
8
3
t2+
16
3
t
(用含t的代數(shù)式表示);
(2)若點P從點C出發(fā)的同時,直線BD沿著射線AD的方向以3cm/s的速度從D點出發(fā),以CP長為直徑作圓⊙O,當點P到達點D時,直線BD也停止運動.當⊙O與直線BD相切時,求DE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•重慶)已知,在矩形ABCD中,E為BC邊上一點,AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點,EF=7,連接AF.如圖1,現(xiàn)有一張硬質(zhì)紙片△GMN,∠NGM=90°,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點N與點E重合,點G在線段DE上.如圖2,△GMN從圖1的位置出發(fā),以每秒1個單位的速度沿EB向點B勻速移動,同時點P從A點出發(fā),以每秒1個單位的速度沿AD向點D勻速移動,點Q為直線GN與線段AE的交點,連接PQ.當點N到達終點B時,△GMN和點P同時停止運動.設運動時間為t秒,解答下列問題:

(1)在整個運動過程中,當點G在線段AE上時,求t的值;
(2)在整個運動過程中,是否存在點P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,說明理由;
(3)在整個運動過程中,設△GMN與△AEF重疊部分的面積為S.請直接寫出S與t之間的函數(shù)關系式以及自變量t的取值范圍.

查看答案和解析>>

同步練習冊答案