如圖,已知拋物線y=-x2+ax+b與x軸從左至右交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且∠BAC=α,∠ABC=β,tanα-tan精英家教網(wǎng)β=2,∠ACB=90°.
(1)求點(diǎn)C的坐標(biāo);
(2)求拋物線的解析式;
(3)若拋物線的頂點(diǎn)為P,求四邊形ABPC的面積.
分析:(1)根據(jù)拋物線的解析式知C(0,b),可設(shè)出A、B的坐標(biāo),在Rt△ACB中,CO⊥AB,根據(jù)射影定理可得到OA•OB=OC2,可由韋達(dá)定理用b表示出OA•OB和OC2的值,根據(jù)上述等量關(guān)系即可得到b的值,由此求得C點(diǎn)坐標(biāo).
(2)分別表示出tanα、tanβ的值,根據(jù)兩者的等量關(guān)系及韋達(dá)定理即可求得a的值,從而確定二次函數(shù)的解析式.
(3)由拋物線的解析式,可求得P點(diǎn)坐標(biāo),進(jìn)而可求得直線PC的解析式,延長PC交x軸于D,根據(jù)直線PC的解析式即可得到D點(diǎn)的坐標(biāo),那么四邊形ABPC的面積即可由△PDB和△ADC的面積差求得.
解答:解:(1)根據(jù)題意設(shè)點(diǎn)A(x1,O)、點(diǎn)B(x2,O),且C(O,b);
x1<0,x2>0,b>0,
∵x1,x2是方程-x2+ax+b=0的兩根,
∴x1+x2=a,x1•x2=-b;(1分)
在Rt△ABC中,OC⊥AB,
∴OC2=OA•OB,
∵OA=-x1,OB=x2,
∴b2=-x1•x2=b,(2分)
∵b>0,
∴b=1,
∴C(0,1);(3分)

(2)在Rt△AOC和Rt△BOC中,
tanα-tanβ=
OC
OA
-
OC
OB
=-
1
x1
-
1
x2
=-
x1+x2
x1x2
=
a
b
=2,(4分)
∴a=2,
∴拋物線解析式為:y=-x2+2x+1.(5分)

(3)∵y=-x2+2x+1,
∴頂點(diǎn)P的坐標(biāo)為(1,2),精英家教網(wǎng)
當(dāng)-x2+2x+1=0時,x=1±
2
,
∴A(1-
2
,0),B(1+
2
,0),(6分)
延長PC交x軸于點(diǎn)D,過C、P的直線為y=x+1,
∴點(diǎn)D的坐標(biāo)為(-1,0),(7分)
S四邊形ABPC=S△DPB-S△DCA
=
1
2
•|DB|•yp-
1
2
|AD|•yc
=
1
2
×(2+
2
)×2
-
1
2
×(2-
2
)×1

=
2+3
2
2
.(8分)
點(diǎn)評:此題考查了直角三角形的性質(zhì)、根與系數(shù)的關(guān)系、銳角三角形函數(shù)、二次函數(shù)解析式的確定以及圖形面積的求法,當(dāng)所求圖形不規(guī)則或無法直接求出其面積時,一般將其轉(zhuǎn)化成其他規(guī)則圖形的面積的和差來解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(4)點(diǎn)Q是直線BC上的一個動點(diǎn),若△QOB為等腰三角形,請寫出此時點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時動點(diǎn)M從O點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時,正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案