【題目】已知:關(guān)于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
(1)求證:無(wú)論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根;
(2)若此方程有兩個(gè)實(shí)數(shù)根x1,x2,且|x1﹣x2|=2,求k的值.
【答案】(1)證明詳見解析;(2) 1或.
【解析】試題分析:(1)確定判別式的范圍即可得出結(jié)論;
(2)根據(jù)根與系數(shù)的關(guān)系表示出x1+x2,x1x2,繼而根據(jù)題意得出方程,解出即可.
(1)證明:①當(dāng)k=0時(shí),方程是一元一次方程,有實(shí)數(shù)根;
②當(dāng)k≠0時(shí),方程是一元二次方程,
∵△=(3k﹣1)2﹣4k×2(k﹣1)=(k+1)2≥0,
∴無(wú)論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根.
(2)解:∵此方程有兩個(gè)實(shí)數(shù)根x1,x2,
∴x1+x2=,x1x2=,
∵|x1﹣x2|=2,
∴(x1﹣x2)2=4,
∴(x1+x2)2﹣4x1x2=4,即﹣4×=4,
解得:=±2,
即k=1或k=﹣,
經(jīng)檢驗(yàn)k=1或k=﹣是方程的解,
則k=1或k=﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料并解決有關(guān)問題:
我們知道,|m|= .現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代
數(shù)式,如化簡(jiǎn)代數(shù)式|m+1|+|m﹣2|時(shí),可令 m+1=0 和 m﹣2=0,分別求得 m=﹣1,m=2(稱﹣1,2 分別為|m+1|與|m﹣2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi), 零點(diǎn)值 m=﹣1 和 m=2 可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下 3 種情況:
(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.從而化簡(jiǎn)代數(shù)式|m+1|+|m﹣2| 可分以下 3 種情況:
(1)當(dāng) m<﹣1 時(shí),原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;
(2)當(dāng)﹣1≤m<2 時(shí),原式=m+1﹣(m﹣2)=3;
(3)當(dāng) m≥2 時(shí),原式=m+1+m﹣2=2m﹣1.
綜上討論,原式=
通過以上閱讀,請(qǐng)你解決以下問題:
(1)分別求出|x﹣5|和|x﹣4|的零點(diǎn)值;
(2)化簡(jiǎn)代數(shù)式|x﹣5|+|x﹣4|;
(3)求代數(shù)式|x﹣5|+|x﹣4|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:①若,則;②直角三角形的兩個(gè)銳角互余:③如果,那么④個(gè)角都是直角的四邊形是正方形.其中,原命題和逆命題均為真命題的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電腦經(jīng)銷商計(jì)劃購(gòu)進(jìn)一批電腦機(jī)箱和液晶顯示器,若購(gòu)電腦機(jī)箱10臺(tái)和液液晶顯示器8臺(tái),共需要資金7000元;若購(gòu)進(jìn)電腦機(jī)箱2臺(tái)和液示器5臺(tái),共需要資金4120元.
(1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?
(2)該經(jīng)銷商購(gòu)進(jìn)這兩種商品共50臺(tái),而可用于購(gòu)買這兩種商品的資金不超過22240元.根據(jù)市場(chǎng)行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤(rùn)不少于4100元.試問:該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長(zhǎng);
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)數(shù)學(xué)研究學(xué)習(xí)小組在某↑字路口隨機(jī)調(diào)查部分市民對(duì)“社會(huì)主義核心價(jià)值觀”的了解情況,統(tǒng)計(jì)結(jié)果后繪制了如圖的兩副不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
得分 | |
(1)本次調(diào)查的總?cè)藬?shù)為 人, 在扇形統(tǒng)計(jì)圖中“心所在扇形的圓心角的度數(shù)為 :
(2)補(bǔ)全頻數(shù)分布圖:
(3)若在這周里,該路口共有人通過,請(qǐng)估計(jì)得分超過的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的曲線是函數(shù)y= (m為常數(shù))圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與正比例函數(shù)y=2x的圖象在第一象限的交點(diǎn)為A(2,n),求點(diǎn)A的坐標(biāo)及反比例
函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com