8、如圖OB、AB分別表示甲、乙兩名同學(xué)運(yùn)動(dòng)的一次函數(shù)圖象,圖中s和t分別表示運(yùn)動(dòng)路程和時(shí)間,已知甲的速度比乙快,下列說法:①甲讓乙先跑12米;②甲的速度比乙快1.5米/秒;③8秒鐘內(nèi),乙在甲前面;④8秒鐘后,甲超過了乙,其中正確的說法是( 。
分析:根據(jù)圖形可以得出乙比甲先跑了12米,甲的速度比乙快1.5米/秒,8秒鐘內(nèi),乙在甲前面,8秒鐘后,甲超過了乙.
解答:解:①由圖形,t=0時(shí),甲在乙前邊12米,即甲讓乙先跑12米,故①正確;
②當(dāng)t=8秒時(shí),甲追上了乙,所以甲的速度比乙快12÷8=1.5米/秒,故②正確;
③8秒鐘內(nèi),AB在OB的上面,即可知乙在甲前面,故③正確;
④8秒鐘內(nèi),AB在OB的下面,即可知甲超過了乙,故④正確.
故選擇B.
點(diǎn)評:本題考查了一次函數(shù)的運(yùn)用,結(jié)合圖形求解.在做題中一定要注意數(shù)形結(jié)合的思想,是解決很多問題的基本思路,圖形可清楚的說明很多問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=
1
4
x2于點(diǎn)A、B,交拋物線C2:y=
1
9
x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:對任意m(m>0)均有
AB
CD
=
2
3
2
3
.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為
2
3
2
3

(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為
8
27
8
27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年吉林省高級中等學(xué)校招生考試數(shù)學(xué) 題型:047

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD

猜想與證明填表:

由上表猜想:對任意m(m>0)均有________.請證明你的猜想.

探究與應(yīng)用(1)利用上面的結(jié)論,可得⊿AOB與⊿CQD面積比為________;

(2)當(dāng)⊿AOB和⊿CQD中有一個(gè)是等腰直角三角形時(shí),求⊿CQD與⊿AOB面積之差;

聯(lián)想與拓展如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則⊿MAE與⊿MDF面積的比值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=數(shù)學(xué)公式x2于點(diǎn)A、B,交拋物線C2:y=數(shù)學(xué)公式x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m123
數(shù)學(xué)公式   
  
由上表猜想:對任意m(m>0)均有數(shù)學(xué)公式=______.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為______;
(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=x2于點(diǎn)A、B,交拋物線C2:y=x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m123
      
     
由上表猜想:對任意m(m>0)均有=______.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為______;
(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(吉林卷)數(shù)學(xué)(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.

【猜想與證明】

填表:

m

1

2

3

 

 

 

由上表猜想:對任意m(m>0)均有=    .請證明你的猜想.

【探究與應(yīng)用】

(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為    ;

(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;

【聯(lián)想與拓展】

如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為    

 

 

查看答案和解析>>

同步練習(xí)冊答案