【題目】如圖,一條直線上有兩只螞蟻,甲螞蟻在點(diǎn)A處,乙螞蟻在點(diǎn)B處,假設(shè)兩只螞蟻同時(shí)出發(fā),爬行方向只能沿直線AB向左向右中隨機(jī)選擇,并且甲螞蟻爬行的速度比乙螞蟻快.(1)甲螞蟻選擇向左爬行的概率為________;

(2)利用列表或畫(huà)樹(shù)狀圖的方法求兩只螞蟻開(kāi)始爬行后會(huì)觸碰到的概率.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):全部等可能情況的總數(shù);符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,由爬行方向只能沿直線AB向左向右中隨機(jī)選擇,直接利用概率公式求解即可求得答案.

2)根據(jù)題意畫(huà)出樹(shù)狀圖或列表,然后由圖表求得所有等可能的結(jié)果與兩只螞蟻開(kāi)始爬行后會(huì)觸碰到的情況,再利用概率公式即可求得答案.

試題解析:解:(1爬行方向只能沿直線AB向左向右中隨機(jī)選擇,

甲螞蟻選擇向左爬行的概率為:

2)畫(huà)樹(shù)狀圖得:

共有4種情況,由于甲螞蟻爬行的速度比乙螞蟻快,兩只螞蟻開(kāi)始爬行后會(huì)觸碰到2種情況:甲向右乙向右,甲向右乙向左,

兩只螞蟻開(kāi)始爬行后會(huì)觸碰到的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:用3A型車(chē)和1B型車(chē)裝滿貨物一次可運(yùn)貨13噸;用1A型車(chē)和2B型車(chē)裝滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有35噸貨物,計(jì)劃同時(shí)租用A型車(chē)輛,B型車(chē)輛,一次運(yùn)完,且恰好每輛車(chē)都裝滿貨物.

根據(jù)以上信息,解答下列問(wèn)題:

(1)1A型車(chē)和1B型車(chē)都裝滿貨物一次可分別運(yùn)貨多少噸?

(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案;

(3)A型車(chē)每輛需租金100元/次,B型車(chē)每輛需租金120元/次.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少租車(chē)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1)P2(x2,y2),我們把|x1x2|+|y1y2|叫做P1P2兩點(diǎn)間的直角距離,記作d(P1,P2)

(1) P0(2,3),O為坐標(biāo)原點(diǎn),則d(O,P0)

(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)1,請(qǐng)寫(xiě)出xy之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫(huà)出所有符合條件的點(diǎn)P所組成的圖形;

(3)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離. P(a,3)到直線y=x1的直角距離為6,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上依次標(biāo)有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點(diǎn)的橫、縱坐標(biāo),則點(diǎn)M(a,b)落在以A(-2,0),B(2,0),C(0,2)為頂點(diǎn)的三角形內(nèi)(包含邊界)的概率是(  )

A. B. C D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小晗家客廳裝有一種三位單極開(kāi)關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個(gè)開(kāi)關(guān)均可打開(kāi)對(duì)應(yīng)的一盞電燈,既可三盞、兩盞齊開(kāi),也可分別單盞開(kāi).因剛搬進(jìn)新房不久,不熟悉情況.

(1)若小晗任意按下一個(gè)開(kāi)關(guān),正好樓梯燈亮的概率是多少?

(2)若任意按下一個(gè)開(kāi)關(guān)后,再按下另兩個(gè)開(kāi)關(guān)中的一個(gè),則正好客廳燈和走廊燈同時(shí)亮的概率是多少?請(qǐng)用樹(shù)狀圖或列表法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己知△ABC是等邊三角形,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,分別連接AP、BP、AQ、CQ,∠ABP=∠ACQ, BP=CQ.

(1)求證:△ABP≌△ACQ;

(2)連接PQ,求證△APQ是等邊三角形;

(3)連接P設(shè)△CPQ是以PQC為頂角的等腰三角形,且∠BPC=100,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°DEAC的垂直平分線.

1)求證:△BCD是等腰三角形;

2△BCD的周長(zhǎng)是aBC=b,求△ACD的周長(zhǎng)(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)民在自己家承包的甲、乙兩片荒山上各栽了200棵蘋(píng)果樹(shù),成活率均為96%,現(xiàn)已掛果.他隨意從甲山采摘了4棵樹(shù)上的蘋(píng)果,稱得質(zhì)量(單位:千克)分別為3640,48,36;從乙山采摘了4棵樹(shù)上的蘋(píng)果,稱得質(zhì)量(單位:千克)分別為50,36,40,34,將這兩組數(shù)據(jù)組成一個(gè)樣本,回答下列問(wèn)題:

1樣本容量是多少?

2樣本平均數(shù)是多少?并估算出甲、乙兩山蘋(píng)果的總產(chǎn)量;

3甲、乙兩山哪個(gè)山上的蘋(píng)果長(zhǎng)勢(shì)較整齊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4,拋物線頂點(diǎn)處到邊MN的距離是4,要在鐵皮上截下一矩形ABCD,使矩形頂點(diǎn)BC落在邊MN上,AD落在拋物線上.

1)如圖建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線解析式;

2)設(shè)矩形ABCD的周長(zhǎng)為L,點(diǎn)C的坐標(biāo)為(m,0),求Lm的關(guān)系式(不要求寫(xiě)自變量取值范圍).

3)問(wèn)這樣截下去的矩形鐵皮的周長(zhǎng)能否等于9.5,若不等于9.5,請(qǐng)說(shuō)明理由,若等于9.5,求出嗎的值?

查看答案和解析>>

同步練習(xí)冊(cè)答案