【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+cAB,C三點,點A的坐標是3,0,點C的坐標是0,-3,動點P在拋物線上.

1b =_________c =_________,點B的坐標為_____________;(直接填寫結(jié)果)

(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;

(3)過動點PPE垂直y軸于點E,交直線AC于點D,過點Dx軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.

【答案】1, (2)存在P的坐標是(3)當EF最短時,點P的坐標是:( )或(,

【解析】試題分析:(1)根據(jù)題意得出答案;(2)分以點C為直角頂點和點A為直角頂點兩種情況分別進行計算;兩種情況都根據(jù)等腰直角三角形的性質(zhì)得出點的坐標;(3)根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短,根據(jù)OC=OA=3,OD⊥AC得出 DAC的中點,從而得出點P的縱坐標,然后根據(jù)題意得出方程,從而求出點P的坐標.

試題解析:(1,, (-1,0).

2)存在.

第一種情況,當以C為直角頂點時,過點CCP1⊥AC,交拋物線于點P1.過點P1y軸的垂線,垂足是M

∵OA=OC,∠AOC =90° ∴∠OCA=∠OAC=45°∵∠ACP1=90°, ∴∠MCP1=90°-45°=45°=∠C P1M

∴MC=MP1. 由(1)可得拋物線為

設(shè),則, 解得:(舍去),

. 則P1的坐標是

第二種情況,當以A為直角頂點時,過點AAP2⊥AC,交拋物線于點P2,過點P2y軸的垂線,垂足是N,AP2y軸于點F∴P2N∥x軸.由∠CAO=45°∴∠OAP2=45°∴∠FP2N=45°,AO=OF=3

∴P2N=NF. 設(shè),則. 解得:(舍去),

, 則P2的坐標是

綜上所述,P的坐標是

3)連接OD,由題意可知,四邊形OFDE是矩形,則OD=EF

根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短. 由(1)可知,在Rt△AOC中,

∵OC=OA=3,OD⊥AC, ∴ DAC的中點. 又∵DF∥OC

P的縱坐標是, 解得:

EF最短時,點P的坐標是:()或(,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=k1x+b(k1≠0)與雙曲線y= (k2≠0)相交于A(1,m)、B(﹣2,﹣1)兩點.
(1)求直線和雙曲線的解析式.
(2)若A1(x1 , y1),A2(x2 , y2),A3(x3 , y3)為雙曲線上的三點,且x1<x2<0<x3 , 請直接寫出y1 , y2 , y3的大小關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解本校年級學生課外閱讀的喜好,隨機抽取該校年級部分學生進行問卷調(diào)査(每人只選一種書籍).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:

(1)這次活動一共調(diào)查了________名學生;

(2)在扇形統(tǒng)計圖中,其他所在扇形圓心角等于__________度;

(3)補全條形統(tǒng)計圖;

(4)若該年級有600名學生,請你估計該年級喜歡科普常識的學生人數(shù)約是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形A′B′C′D′的位置,旋轉(zhuǎn)角為a (0°<a<90°).若∠1=110°,則a=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( 。

A. 射線是直線的一半B. 兩點間的線叫做線段

C. 延長射線OAD. 兩點確定一條直線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形的邊長為2,連對角線AD,BE,CE,線段AD分別與BE和CE相交于點M,N,則MN=__________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有200個零件,平均分給甲、乙兩車間加工,由于乙另有任務(wù),所以在甲開始工作2小時后,乙才開始工作,因此比甲遲20分鐘完成任務(wù).已知乙每小時加工零件的個數(shù)是甲的2倍,問甲、乙兩車間每小時各加工多少零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡與求值:

)已知當時,代數(shù)式值為,求代數(shù)式的值.

)已知,代數(shù)式的值.

)若多項式是關(guān)于, 的四次二項式,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:2x2-5x+4-2x2-6x),其中x=-3

查看答案和解析>>

同步練習冊答案