【題目】如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為a為15米),圍成中間隔有一道籬笆的長方形花圃。
①如果要圍成面積為45平方米的花圃,AB的長是多少米?
②能圍成面積比45平方米更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
【答案】(1)AB的長為3m或5m;(2)當AB長為4m,BC為12m時,有最大面積,為48平方米.
【解析】
(1)設AB的長是x米,則BC的長為(24-3x)米,根據(jù)矩形的面積公式得到關于x的方程,然后求解方程即可;
(2)利用配方法將(1)中的一元二次方程變形即可得到答案.
(1)設AB的長是x米,則BC的長為(24-3x)米,
根據(jù)題意得:(24-3x)x=45,
解得x1=3,x2=5,
當x=3時,長方形花圃的長為24-3x=15;
當x=5時,長方形花圃的長為24-3x=9,
均符合題意;
∴AB的長為3m或5m;
(2)花圃的面積為:(24-3x)x=-3x2+24x=-3(x2-8x+16-16)=-3(x-4)2+48,
∴當AB長為4m,BC為12m時,有最大面積,為48平方米.
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,點 E、F 分別在 AB、CD 上,連接 EF.∠AEF、∠CF的平分線交于點 G,∠BEF、∠DFE 的平分線交于點 H.求證:四邊形 EGFH 是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】晨光文具店有一套體育用品:1個籃球,1個排球和1個足球,一套售價300元,也可以單獨出售,小攀同學共有50元、20元、10元三種面額鈔票各若干張.如果單獨出售,每個球只能用到同一種面額的鈔票去購買.若小面額的錢的張數(shù)恰等于另兩種面額錢張數(shù)的乘積,那么所有可能中單獨購買三個球中所用到的錢最少的一個球是___________元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,形如三角板的ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圓O的直徑DE=12cm,矩形DEFG的寬EF=6cm,矩形量角器以2cm/s的速度從左向右運動,在運動過程中,點D、E始終在BC所在的直線上,設運動時間為x(s),矩形量角器和ABC的重疊部分的面積為S(cm2).當x=0(s)時,點E與點C重合.(圖(3)、圖(4)、圖(5)供操作用).
(1)當x=3時,如圖(2),求S, 當x=6時,求S,當x=9時,求S;(直接寫結果)
(2)當3<x<6時,求S關于x的函數(shù)關系式;
(3)當6<x<9時,求S關于x的函數(shù)關系式;
(4)當x為何值時, ABC的斜邊所在的直線與半圓O所在的圓相切?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角梯形ABCD中,∠BAD=∠CDA=90°,AB=,CD=2,過A,B,D三點的☉O分別交BC,CD于點E,M,且CE=2,下列結論:①DM=CM;②弧AB=弧EM;③☉O的直徑為2;④AE=.其中正確的結論是( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com