【題目】⊙O的直徑為2,AB,AC為⊙O的兩條弦,AB=,AC=,則∠BAC=_____

【答案】15°或75°.

【解析】

根據(jù)題意點C的位置有兩種情況,如圖1,∠BAC=∠CAO+∠OAB;如圖2,∠BAC=∠OAB-∠OAC,進(jìn)而得出答案.

解:如圖1,連接OC,OA,OB,過點OOE⊥AC于點E,

∵OA=OB=1,AB=,

12+12=(2,

∴∠AOB=90°,

∴△OAB是等腰直角三角形,∠OAB=45°,

∵AC=,OE⊥AC,

∴AE= ,

∴cos∠EAO=,

∴∠EAO=30°,

如圖1時,∠BAC=∠CAO+∠OAB=30°+45°=75°;

如圖2時,∠BAC=∠BAC=∠OAB﹣∠OAC.=45°﹣30°=15°.

故答案為15°75°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為a為15米),圍成中間隔有一道籬笆的長方形花圃。

①如果要圍成面積為45平方米的花圃,AB的長是多少米?

②能圍成面積比45平方米更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤=售價﹣制造成本)

(1)寫出每月的利潤w(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價為多少元時,廠商每月能獲得350萬元的利潤?

(3)當(dāng)銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)當(dāng)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊中,,點從點出發(fā)沿邊向點的速度移動,點從點出發(fā)沿邊向點的速度移動,,兩點同時出發(fā),它們移動的時間為.

1)用分別表示的長度;

2)經(jīng)過幾秒鐘后,為等邊三角形?

3)若,兩點分別從兩點同時出發(fā),并且都按順時針方向沿三邊運動,請問經(jīng)過幾秒鐘后點與點第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角邊長為的等腰直角三角形與邊長為3的等邊三角形在同一水平線上,等腰直角三角形沿水平線從左向右勻速穿過等邊三角形時,設(shè)穿過時間為t,兩圖形重合部分的面積為S,則S關(guān)于t的圖象大致為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(足夠長),已知計劃中的建筑材料可建圍墻的總長度為50m 設(shè)飼養(yǎng)室為長為x(m),占地面積為

(1)如圖 ,問飼養(yǎng)室為長x為多少時,占地面積y 最大?

(2)如圖,現(xiàn)要求在圖中所示位置留2m的門,且仍使飼養(yǎng)室占地面積最大.小敏說:只要飼養(yǎng)室長比(1)的長多2m就行了.請你通過計算,判斷小敏的說法是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c與x軸交于A,B兩點,與y軸交于點C,其中點B的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,8),且拋物線的對稱軸是直線x=﹣2.

(1)求此拋物線的表達(dá)式;

(2)連接AC,BC,若點E是線段AB上的一個動點(與點A,B不重合),過點E作EFAC交BC于點F,連接CE,設(shè)AE的長為m,CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;

(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請求出S的最大值,并判斷S取得最大值時BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案