已知:,且,

(1)求等于多少?

(2)若,求的值.

 

【答案】

(1) (2) 3

【解析】(1)∵A-2B=A-2(-4a2+6ab+7)=7a2-7ab,

∴A=(7a2-7ab)+2(-4a2+6ab+7)=-a2+5ab+14;

(2)依題意得:a+1=0,b-2=0,

a=-1,b=2.

原式A=-(-1)2+5×(-1)×2+14=3.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

29、如圖,CD是經(jīng)過∠BCA頂點C的一條直線,且直線CD經(jīng)過∠BCA的內(nèi)部,點E,F(xiàn)在射線CD上,已知CA=CB且∠BEC=∠CFA=∠α.
(1)如圖1,若∠BCA=90°,∠α=90°,問EF=BE-AF,成立嗎?說明理由.
(2)將(1)中的已知條件改成∠BCA=60°,∠α=120°(如圖2),問EF=BE-AF仍成立嗎?說明理由.
(3)若0°<∠BCA<90°,請你添加一個關于∠α與∠BCA關系的條件,使結(jié)論EF=BE-AF仍然成立.你添加的條件是
∠α+∠BCA=180°
.(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,已知AB=CD且∠ABD=∠BDC,要證∠A=∠C,判定△ABD≌△CDB的方法是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(
對頂角相等

∴∠2=∠CGD(等量代換)
∴CE∥BF(
同位角相等,兩直線平行

∴∠
C
=∠BFD(
兩直線平行,同位角相等

又∵∠B=∠C(已知)
∴∠BFD=∠B(等量代換)
∴AB∥CD(
內(nèi)錯角相等,兩直線平行

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠AOB=30° 且∠AOB內(nèi)有一點P,點P關于OA、OB的對稱點分別為E、F,則△EOF一定是
等邊
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法中,正確的是( 。

查看答案和解析>>

同步練習冊答案