【題目】如圖,已知頂點(diǎn)為M(,)的拋物線過點(diǎn)D(3,2),交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是拋物線上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線AD上方時(shí),求△PAD面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)過點(diǎn)P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為Q'.是否存在點(diǎn)P,使Q'恰好落在x軸上?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
【答案】(1);(2)最大值為4,點(diǎn)P(1,3);(3)存在,點(diǎn)P的坐標(biāo)為(,).
【解析】
(1)用待定系數(shù)法求解即可;
(2)由△PAD面積S=S△PHA+S△PHD,即可求解;
(3)結(jié)合圖形可判斷出點(diǎn)P在直線CD下方,設(shè)點(diǎn)P的坐標(biāo)為(a,),當(dāng)P點(diǎn)在y軸右側(cè)時(shí),運(yùn)用解直角三角形及相似三角形的性質(zhì)進(jìn)行求解即可.
解:(1)設(shè)拋物線的表達(dá)式為:y=a(x﹣h)2+k=a(x﹣)2+,
將點(diǎn)D的坐標(biāo)代入上式得:2=a(3﹣)2+,
解得:a=﹣,
∴拋物線的表達(dá)式為:;
(2)當(dāng)x=0時(shí),y=﹣x2+x+2=2,
即點(diǎn)C坐標(biāo)為(0,2),
同理,令y=0,則x=4或﹣1,故點(diǎn)A、B的坐標(biāo)分別為:(﹣1,0)、(4,0),
過點(diǎn)P作y軸的平行線交AD于點(diǎn)H,
由點(diǎn)A、D的坐標(biāo)得,直線AD的表達(dá)式為:y=(x+1),
設(shè)點(diǎn)P(x,﹣x2+x+2),則點(diǎn)H(x,x+),
則△PAD面積為:
S=S△PHA+S△PHD=×PH×(xD﹣xA)=×4×(﹣x2+x+2﹣x)=﹣x2+2x+3,
∵﹣1<0,故S有最大值,
當(dāng)x=1時(shí),S有最大值,則點(diǎn)P(1,3);
(3)存在滿足條件的點(diǎn)P,顯然點(diǎn)P在直線CD下方,設(shè)直線PQ交x軸于F,點(diǎn)P的坐標(biāo)為(a,﹣a2+a+2),
當(dāng)P點(diǎn)在y軸右側(cè)時(shí)(如圖2),CQ=a,
PQ=2﹣(﹣a2+a+2)=a2﹣a,
又∵∠CQ′O+∠FQ′P=90°,∠COQ′=∠Q′FP=90°,
∴∠FQ′P=∠OCQ′,
∴△COQ′∽△Q′FP,
,即,
∴Q′F=a﹣3,
∴OQ′=OF﹣Q′F=a﹣(a﹣3)=3,CQ=CQ′=,
此時(shí)a=,點(diǎn)P的坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1經(jīng)過A(﹣0.5,0),B(﹣4,﹣3)兩點(diǎn),交y軸于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)P是拋物線對(duì)稱軸上一動(dòng)點(diǎn),求使得PA+PC最小時(shí)P點(diǎn)的坐標(biāo);
(3)直線BC交x軸于點(diǎn)D,連結(jié)AC,若點(diǎn)P是y軸上一動(dòng)點(diǎn),且點(diǎn)P不與點(diǎn)C重合,是否存在點(diǎn)P,使得以P,B,C為頂點(diǎn)的三角形與△ACD相似?若存在,確定點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行鋼筆書法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中相關(guān)信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;
(3)獲得一等獎(jiǎng)的同學(xué)中有來自七年級(jí),有來自九年級(jí),其他同學(xué)均來自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書法大賽,請(qǐng)通過列表或畫樹狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:AEF≌△DEB;
(2)若∠BAC=90°,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,∠CAB=30°,以AB的中點(diǎn)為圓心,OA的長(zhǎng)為半徑作半圓交AC于點(diǎn)D,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】港口 A、B、C 依次在同一條直線上,甲、乙兩艘船同時(shí)分別從 A、B兩港出發(fā),勻速駛向 C 港,甲、乙兩船與 B 港的距離 y(海里)與行駛時(shí)間 x 時(shí))之間的函數(shù)關(guān)系如圖所示,則下列說法錯(cuò)誤的是( )
A.甲船平均速度為 60 海里/時(shí)B.乙船平均速度為 30 海里/時(shí)
C.甲、乙兩船在途中相遇兩次D.A、C 兩港之間的距離為 120 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,已知∠ACB=90°,AC=BC=4,若點(diǎn)E在△ABC內(nèi)部運(yùn)動(dòng),且滿足AE2=BE2+2CE2,則點(diǎn)E的運(yùn)動(dòng)路徑長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家經(jīng)營(yíng)打印耗材的門店經(jīng)銷各種打印耗材,其中某一品牌硒鼓的進(jìn)價(jià)為元/個(gè),售價(jià)為元/個(gè)().下面是門店在銷售一段時(shí)間后銷售情況的反饋:
①若每個(gè)硒鼓按定價(jià)30元的8折出售,可獲的利潤(rùn);
②如果硒鼓按30元/個(gè)的價(jià)格出售,每月可售出500個(gè),在此基礎(chǔ)上,售價(jià)每增加5元,月銷售量就減少50個(gè).
(1)求的值,并寫出該品牌硒鼓每月的銷售量(個(gè))與售價(jià)(元/個(gè))之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)求該耗材店銷售這種硒鼓每月獲得的利潤(rùn)(元)與售價(jià)(元/個(gè))之間的函數(shù)關(guān)系式,并求每月獲得的最大利潤(rùn);
(3)在新冠肺炎流行期間,這種硒鼓的進(jìn)價(jià)降低為元/個(gè),售價(jià)為元/個(gè)().耗材店在2月份仍然按照銷售量與售價(jià)關(guān)系不變的方式銷售,并決定將當(dāng)月銷售這種硒鼓獲得的利潤(rùn)全部捐贈(zèng)給火神山醫(yī)院,支援武漢抗擊新冠肺炎.若要使這個(gè)月銷售這種硒鼓獲得的利潤(rùn)(元)隨售價(jià)(元/個(gè))的增大而增大,請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com