【題目】如圖,E,F分別是正方形ABCD的邊CB,DC延長線上的點(diǎn),且BE=CF,過點(diǎn)EFGBF,交正方形外角的平分線CG于點(diǎn)G,連接GF.求證:

1AEBF;

2)四邊形BEGF是平行四邊形.

【答案】1)見解析;(2)見解析;

【解析】

1)由SAS證明△ABE≌△BCF得出AE=BF,∠BAE=CBF,由平行線的性質(zhì)得出∠CBF=CEG,證出AEEG,即可得出結(jié)論;

2)延長AB至點(diǎn)P,使BP=BE,連接EP,則AP=CE,∠EBP=90°,證明△APE≌△ECG得出AE=EG,證出EG=BF,即可得出結(jié)論.

證明:(1四邊形是正方形,

,,

,

中,

,

,

,

,

,

2)延長至點(diǎn),使,連接,如圖所示:

,,

為正方形外角的平分線,

,

由(1)得

中,,

,

,

,

四邊形是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測量城門大樓的高度,在點(diǎn)B處測得樓頂A的仰角為22°,他正對(duì)著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺(tái)D處,并測得此時(shí)樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在AB之間拉上繩子,并在繩子上掛一些彩旗,請(qǐng)你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形中,,作AB于點(diǎn)M,AC于點(diǎn)N

1)在圖1中,求證:;

2)在圖2中的線段CB上取一動(dòng)點(diǎn)P,過PCM于點(diǎn)E,作BN于點(diǎn)F,求證:;

3)在圖3中動(dòng)點(diǎn)P在線段CB的延長線上,類似(2)過PCM的延長線于點(diǎn)E,作NB的延長線于點(diǎn)F,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租公司有若干輛同一型號(hào)的貨車對(duì)外出租,每輛貨車的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計(jì),淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.

1)該出租公司這批對(duì)外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?

2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會(huì)減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時(shí),該出租公司的日租金總收入最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形的圓內(nèi)接四邊形,線段的直徑,連結(jié).點(diǎn)是線段上的一點(diǎn),連結(jié),且,的延長線與的延長線相交與點(diǎn)

(1)求證:四邊形是平行四邊形;

(2)若,

①求證:為等腰直角三角形;

②求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有四個(gè)小球,上面分別標(biāo)有數(shù)字-2-1,01,它們除了數(shù)字不一樣外,其它完全相同.

1)隨機(jī)從袋子中摸出一個(gè)小球,摸出的球上面標(biāo)的數(shù)字為正數(shù)的概率是__________.

2)小聰先從袋子中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為點(diǎn)的縱坐標(biāo),如圖,已知四邊形的四個(gè)頂點(diǎn)的坐標(biāo)分別為,,,請(qǐng)用畫樹狀圖或列表法,求點(diǎn)落在四邊形所圍成的部分內(nèi)(含邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)過點(diǎn)A,垂足為M,求證:四邊形ADBM為正方形;

(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);

(4)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問:是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級(jí)學(xué)生一分鐘跳繩情況,從這兩個(gè)年級(jí)隨機(jī)抽取名學(xué)生進(jìn)行測試,并對(duì)測試成績(一分鐘跳繩次數(shù))進(jìn)行整理、描述和分析,下面給出了部分信息:

七年級(jí)學(xué)生一分鐘跳繩成績頻數(shù)分布直方圖

七、八年級(jí)學(xué)生一分鐘跳繩成績分析表

七年級(jí)學(xué)生一分鐘跳繩成績(數(shù)據(jù)分組:)在這一組的是:

根據(jù)以上信息,回答下列問題:

表中   ;

在這次測試中,七年級(jí)甲同學(xué)的成績次,八年級(jí)乙同學(xué)的成績,他們的測試成績,在各自年級(jí)所抽取的名同學(xué)中,排名更靠前的是   (填),理由是   

該校七年級(jí)共有名學(xué)生,估計(jì)一分鐘跳繩不低于次的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.

(1)證明:四邊形ADCE為菱形.

(2)BC=6,AB=10,求菱形ADCE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案