【題目】如圖,在平面直角坐標(biāo)系中,直線x軸,y軸分別交于點(diǎn)A,點(diǎn)B,拋物線經(jīng)過(guò)A,B與點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)AB重合),過(guò)點(diǎn)Px軸的垂線,垂足為D,交線段AB于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.

①求的面積y關(guān)于m的函數(shù)關(guān)系式,當(dāng)m為何值時(shí),y有最大值,最大值是多少?

②若點(diǎn)E是垂線段PD的三等分點(diǎn),求點(diǎn)P的坐標(biāo).

【答案】(1);(2)①解析式,當(dāng)m=1時(shí)y有最大值,最大值是3;②P(2,3)或P(

【解析】

(1)根據(jù)“直線與x軸,y軸分別交于點(diǎn)A,點(diǎn)B”可求A,B坐標(biāo),再將A,B,C三點(diǎn)坐標(biāo)代入二次函數(shù)解析式即可求出a,b,c的值,從而得出答案;

(2)①根據(jù)已知可得點(diǎn)P坐標(biāo),從而可求點(diǎn)E坐標(biāo),根據(jù)兩點(diǎn)之間的距離公式可知PE的代數(shù)式,再根據(jù)三角形的面積公式即可得出結(jié)論;②分當(dāng)PE=2ED時(shí),當(dāng)2PE=ED兩種情況,列方程求解即可得出結(jié)論.

解:(1)∵直線與x軸,y軸分別交于點(diǎn)A,點(diǎn)B

∴A(3,0),B(0,3)

將A(3,0),B(0,3),C(-1,0)代入到中有

解得

∴拋物線的解析式為;

(2)①∵點(diǎn)P的橫坐標(biāo)為m,且在拋物線上

∴點(diǎn)P的坐標(biāo)為(m,

∵PD⊥x軸

∴點(diǎn)E的坐標(biāo)是(m,-m+3)

∴y關(guān)于m的解析式為:

∴當(dāng)m=1時(shí),y有最大值,最大值是3;

②當(dāng)PE=2ED時(shí),

解得:m=2或m=3(不符合題意舍去);

當(dāng)2PE=ED時(shí)

整理得

解得:,m=3(不符合題意舍去)

將點(diǎn)m=2或m=代入拋物線解析式

∴點(diǎn)P(2,3)或P(

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:

(1)如圖①,在正方形中,,點(diǎn),分別在,上,連接,若,,以為斜邊,向下作直角三角形,則在邊上存在 個(gè)符合條件的直角頂點(diǎn);

問(wèn)題探究:

(2)如圖②,在(1)的條件下,是符合題意的一個(gè)直角三角形,求的面積;

問(wèn)題解決:

(3)某小區(qū)有一個(gè)邊長(zhǎng)為40米的正方形活動(dòng)區(qū)域,小區(qū)物業(yè)在一面墻的處安裝臺(tái)監(jiān)控器,該監(jiān)控器的視角為,監(jiān)控器可以左右來(lái)回轉(zhuǎn)動(dòng),并且可以監(jiān)控該區(qū)域的每一個(gè)地方.如圖③,正方形是過(guò)點(diǎn)的一個(gè)水平面,,與正方形在同一個(gè)平面內(nèi),連接,若面積的最值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張邊長(zhǎng)為10cm的正方形紙板的四周各剪去一個(gè)邊長(zhǎng)為xcm的小正方形,再折疊成一個(gè)無(wú)蓋的長(zhǎng)方體盒子.

1)當(dāng)長(zhǎng)方體盒子的底面積為81cm2時(shí),求所剪去的小正方形的邊長(zhǎng).

2)設(shè)所折疊的長(zhǎng)方體盒子的側(cè)面積為S,求Sx的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.

3)長(zhǎng)方體盒子的側(cè)面積為S的值能否是60cm2,若能,請(qǐng)求出x的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=18AD=12,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DMAC交于點(diǎn)G,點(diǎn)EF分別是CDDG上的點(diǎn),連結(jié)EF

(1)求證:CG=2AG.

(2)DE=6,當(dāng)以E,F,D為頂點(diǎn)的三角形與CDG相似時(shí),求EF的長(zhǎng).

(3)若點(diǎn)E從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)G出發(fā),以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá),另一個(gè)隨即停止運(yùn)動(dòng).在整個(gè)運(yùn)動(dòng)過(guò)程中,求四邊形CEFG的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)是10,四個(gè)全等的小正方形的對(duì)稱(chēng)中心分別在ABCD的頂點(diǎn)上,且它們的各邊與正方形ABCD各邊平行或垂直。若小正方形的邊長(zhǎng)為x,且,陰影部分的面積為y,則能反映yx之間函數(shù)關(guān)系的大致圖形是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為

(1)求k的值;

(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;

(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】贛縣田村素稱(chēng)燈彩之鄉(xiāng),田村花燈源于唐代,盛于宋朝,迄今已有1300多年歷史了,某公司生產(chǎn)了一種田村花燈,每件田村花燈制造成本為20元.設(shè)銷(xiāo)售單價(jià)x(元),每日銷(xiāo)售量y(件)、每日的利潤(rùn)w(元).在試銷(xiāo)過(guò)程中,每日銷(xiāo)售量y(件)、每日的利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間存在一定的關(guān)系,其幾組對(duì)應(yīng)量如下表所示:

銷(xiāo)售單價(jià)x(元)

30

31

32

40

銷(xiāo)售量y(件)

40

38

36

20

1)根據(jù)表中數(shù)據(jù)的規(guī)律、分別寫(xiě)出每日銷(xiāo)售量y(件)、每日利潤(rùn)w(元)關(guān)于銷(xiāo)售單價(jià)x(元)之間的函數(shù)表達(dá)式(利潤(rùn)=(銷(xiāo)售單價(jià)﹣成本單價(jià))×銷(xiāo)售件數(shù)).

2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),公司每日能夠獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】布袋里有四個(gè)小球,球表面分別標(biāo)有2、3、4、6四個(gè)數(shù)字,它們的材質(zhì)、形狀、大小完全相同。從中隨機(jī)摸出一個(gè)小球記下數(shù)字為x,再?gòu)氖O碌娜齻(gè)球中隨機(jī)摸出一個(gè)球記下數(shù)字為y,點(diǎn)A的坐標(biāo)為(x,y).運(yùn)用畫(huà)樹(shù)狀圖或列表的方法,寫(xiě)出A點(diǎn)所有可能的坐標(biāo),并求出點(diǎn)A在反比例函數(shù)圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y1axb與反比例函數(shù)y2交于A,B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)A的縱坐標(biāo)為6,點(diǎn)B的坐標(biāo)為(-3,-2).

(1)求直線和反比例函數(shù)的解析式;

(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象直接寫(xiě)出y1<0時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案