【題目】如圖,拋物線經(jīng)過(guò)兩點(diǎn).

1)求拋物線的解析式;

2)將拋物線向下平移個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在的內(nèi)部(不包括的邊界),求的取值范圍.

3)若是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn),使的面積是?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2;(3)存在,

【解析】

1)把點(diǎn)A0,6)、B4,2)代入yx2bxc,利用待定系數(shù)法即可得出拋物線的解析式;

2)先利用配方法求出二次函數(shù)的頂點(diǎn)坐標(biāo),利用待定系數(shù)法分別求出直線AB與直線OB的解析式,將頂點(diǎn)橫坐標(biāo)的值分別代入兩直線的解析式,求出對(duì)應(yīng)的y的值,進(jìn)而得出m的取值范圍;

3)設(shè)拋物線上存在點(diǎn)Px,x23x6),使△PAB的面積是10.過(guò)Px軸的垂線,交直線ABQ,則Qxx6).分兩種情況進(jìn)行討論:①點(diǎn)PAB上方;②點(diǎn)PAB下方.根據(jù)△PAB的面積是10列方程求解.

解:(1)拋物線過(guò),則有:

解之得:  

所求的解析式是:

2

頂點(diǎn)的坐標(biāo)為

設(shè)直線的解析式是,因?yàn)橹本經(jīng)過(guò)、兩點(diǎn),

所以有 解之得:

直線的解析式為

設(shè)直線的解析式是,因?yàn)橹本經(jīng)過(guò)、兩點(diǎn),

所以有 ,解之得:

直線的解析式為

代入

代入

,

3)設(shè)拋物線上存在點(diǎn)Px,x23x6),使△PAB的面積是10

過(guò)Px軸的垂線,交直線ABQ,

∵直線的解析式為,則Qxx6).

分兩種情況:①點(diǎn)PAB上方時(shí),

PQx23x6x6)=x24x,

∵△PAB的面積=△PAQ的面積+△PQB的面積

PQ42PQ10

PQ5,

x24x5

解得x無(wú)實(shí)數(shù)根;

②點(diǎn)PAB下方時(shí),

PQ=(x6x23x6)=x24x,

∵△PAB的面積=|PAQ的面積PQB的面積|

PQ42PQ10

PQ5,

x24x5

解得x11,x25,

故所求P點(diǎn)坐標(biāo)為(1,2)或(54).

綜上,存在使的面積是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形邊長(zhǎng)為2,、分別是、上兩動(dòng)點(diǎn),且滿足,于點(diǎn)

(1)如圖1,判斷線段的位置關(guān)系,并說(shuō)明理由;

(2)在(1)的條件下,連接,直接寫(xiě)出的最小值為

(3)如圖2,點(diǎn)的中點(diǎn),連接

①求證:平分;

②求線段的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣1,2).

1)畫(huà)出ABC關(guān)于原點(diǎn)O成中心對(duì)稱的ABC,點(diǎn)AB,C分別是點(diǎn)A,BC的對(duì)應(yīng)點(diǎn).

2)求過(guò)點(diǎn)B的反比例函數(shù)解析式.

3)判斷AB的中點(diǎn)P是否在(2)的函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ABAD,對(duì)角線AC,BD交于點(diǎn)OAC平分∠BAD,過(guò)點(diǎn)CCEABAB的延長(zhǎng)線于點(diǎn)E,連接OE

1)求證:四邊形ABCD是菱形;

2)若AB,BD2,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為rr0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足,則稱點(diǎn)P為⊙O隨心點(diǎn)

1)當(dāng)⊙O的半徑r=2時(shí),A3,0),B0,4),C2),D,)中,⊙O隨心點(diǎn) ;

2)若點(diǎn)E4,3)是⊙O隨心點(diǎn),求⊙O的半徑r的取值范圍;

3)當(dāng)⊙O的半徑r=2時(shí),直線y=- x+bb≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O隨心點(diǎn),直接寫(xiě)出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家的門(mén)框上裝有一把防盜門(mén)鎖(如圖1)其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧和矩形組成,的圓心是倒鎖按鈕點(diǎn).其中的弓高.當(dāng)鎖柄繞著點(diǎn)旋轉(zhuǎn)至位置時(shí),門(mén)鎖打開(kāi),此時(shí)直線所在圓相切,且的長(zhǎng)度約為____________(結(jié)果精確到,參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C在圓O上,BECD垂足為ECB平分∠ABE,連接BC

1)求證:CD為⊙O的切線;

2)若cosCABCE,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C=90°,∠B的平分線交ACE,DEBE

1)試說(shuō)明AC是△BED外接圓的切線;

2)若CE=1,BC=2,求△ABC內(nèi)切圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的方程C1m>0與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè)

1若拋物線C1過(guò)點(diǎn)M2, 2,求實(shí)數(shù)m的值;

21的條件下,在拋物線的對(duì)稱軸上找一點(diǎn)H,使得BH+EH最小,求出點(diǎn)H的坐標(biāo);

3在第四象限內(nèi),拋物線C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與BCE相似?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案