【題目】如圖,拋物線經(jīng)過(guò)、兩點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線向下平移個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在的內(nèi)部(不包括的邊界),求的取值范圍.
(3)若是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn),使的面積是?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2);(3)存在,和
【解析】
(1)把點(diǎn)A(0,6)、B(4,2)代入y=x2+bx+c,利用待定系數(shù)法即可得出拋物線的解析式;
(2)先利用配方法求出二次函數(shù)的頂點(diǎn)坐標(biāo),利用待定系數(shù)法分別求出直線AB與直線OB的解析式,將頂點(diǎn)橫坐標(biāo)的值分別代入兩直線的解析式,求出對(duì)應(yīng)的y的值,進(jìn)而得出m的取值范圍;
(3)設(shè)拋物線上存在點(diǎn)P(x,x2+3x+6),使△PAB的面積是10.過(guò)P作x軸的垂線,交直線AB于Q,則Q(x,x+6).分兩種情況進(jìn)行討論:①點(diǎn)P在AB上方;②點(diǎn)P在AB下方.根據(jù)△PAB的面積是10列方程求解.
解:(1)拋物線過(guò),,則有:
解之得:
∴所求的解析式是:
(2)∵
∴ 頂點(diǎn)的坐標(biāo)為.
設(shè)直線的解析式是,因?yàn)橹本經(jīng)過(guò)、兩點(diǎn),
所以有, 解之得:
∴直線的解析式為.
設(shè)直線的解析式是,因?yàn)橹本經(jīng)過(guò)、兩點(diǎn),
所以有 ,解之得:
∴直線的解析式為.
把代入得
把代入得
∵,
∴.
(3)設(shè)拋物線上存在點(diǎn)P(x,x2+3x+6),使△PAB的面積是10.
過(guò)P作x軸的垂線,交直線AB于Q,
∵直線的解析式為,則Q(x,x+6).
分兩種情況:①點(diǎn)P在AB上方時(shí),
PQ=x2+3x+6(x+6)=x2+4x,
∵△PAB的面積=△PAQ的面積+△PQB的面積
=PQ4=2PQ=10,
∴PQ=5,
∴x2+4x=5,
解得x無(wú)實(shí)數(shù)根;
②點(diǎn)P在AB下方時(shí),
PQ=(x+6)(x2+3x+6)=x24x,
∵△PAB的面積=|△PAQ的面積△PQB的面積|
=PQ4=2PQ=10,
∴PQ=5,
∴x24x=5,
解得x1=1,x2=5,
故所求P點(diǎn)坐標(biāo)為(1,2)或(5,4).
綜上,存在和使的面積是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形邊長(zhǎng)為2,、分別是、上兩動(dòng)點(diǎn),且滿足,交于點(diǎn).
(1)如圖1,判斷線段、的位置關(guān)系,并說(shuō)明理由;
(2)在(1)的條件下,連接,直接寫(xiě)出的最小值為 ;
(3)如圖2,點(diǎn)為的中點(diǎn),連接.
①求證:平分;
②求線段的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣1,2).
(1)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A′B′C′,點(diǎn)A′,B′,C′分別是點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn).
(2)求過(guò)點(diǎn)B′的反比例函數(shù)解析式.
(3)判斷A′B′的中點(diǎn)P是否在(2)的函數(shù)圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足,則稱點(diǎn)P為⊙O的“隨心點(diǎn)”.
(1)當(dāng)⊙O的半徑r=2時(shí),A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點(diǎn)”是 ;
(2)若點(diǎn)E(4,3)是⊙O的“隨心點(diǎn)”,求⊙O的半徑r的取值范圍;
(3)當(dāng)⊙O的半徑r=2時(shí),直線y=- x+b(b≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O的“隨心點(diǎn)”,直接寫(xiě)出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家的門(mén)框上裝有一把防盜門(mén)鎖(如圖1)其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧和矩形組成,的圓心是倒鎖按鈕點(diǎn).其中的弓高.當(dāng)鎖柄繞著點(diǎn)旋轉(zhuǎn)至位置時(shí),門(mén)鎖打開(kāi),此時(shí)直線與所在圓相切,且則的長(zhǎng)度約為____________.(結(jié)果精確到,參考數(shù)據(jù):).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在圓O上,BE⊥CD垂足為E,CB平分∠ABE,連接BC
(1)求證:CD為⊙O的切線;
(2)若cos∠CAB=,CE=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠B的平分線交AC于E,DE⊥BE.
(1)試說(shuō)明AC是△BED外接圓的切線;
(2)若CE=1,BC=2,求△ABC內(nèi)切圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的方程C1:(m>0)與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若拋物線C1過(guò)點(diǎn)M(2, 2),求實(shí)數(shù)m的值;
(2)在(1)的條件下,在拋物線的對(duì)稱軸上找一點(diǎn)H,使得BH+EH最小,求出點(diǎn)H的坐標(biāo);
(3)在第四象限內(nèi),拋物線C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與△BCE相似?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com