如圖,在⊙O中,弦AB垂直平分半徑OC,垂足為D,若⊙O的半徑為2,則弦AB的長為 2 

考點:

垂徑定理;勾股定理.

專題:

計算題.

分析:

連接OA,由AB垂直平分OC,求出OD的長,再利用垂徑定理得到D為AB的中點,在直角三角形AOD中,利用垂徑定理求出AD的長,即可確定出AB的長.

解答:

解:連接OA,由AB垂直平分OC,得到OD=OC=1,

∵OC⊥AB,

∴D為AB的中點,

則AB=2AD=2=2=2

故答案為:2

點評:

此題考查了垂徑定理,以及勾股定理,熟練掌握垂徑定理是解本題的關(guān)鍵.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標系.
(1)求圓心M的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)設(shè)點P是⊙M上的一個動點,當△PAB為Rt△PAB時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當
AC
DB
為何值時,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習冊答案