【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使得點(diǎn)A落在點(diǎn)A'處,當(dāng)A'E⊥AC時(shí),A'B=

【答案】 或7
【解析】解:分兩種情況: ①如圖1,過(guò)D作DG⊥BC與G,交A′E與F,過(guò)B作BH⊥A′E與H,

∵D為AB的中點(diǎn),
∴BD= AB=AD,
∵∠C=90,AC=8,BC=6,
∴AB=10,
∴BD=AD=5,
sin∠ABC=
,
∴DG=4,
由翻折得:∠DA′E=∠A,A′D=AD=5,
∴sin∠DA′E=sin∠A= ,
,
∴DF=3,
∴FG=4﹣3=1,
∵A′E⊥AC,BC⊥AC,
∴A′E∥BC,
∴∠HFG+∠DGB=180°,
∵∠DGB=90°,
∴∠HFG=90°,
∵∠EHB=90°,
∴四邊形HFGB是矩形,
∴BH=FG=1,
同理得:A′E=AE=8﹣1=7,
∴A′H=A′E﹣EH=7﹣6=1,
在Rt△AHB中,由勾股定理得:A′B= =
②如圖2,過(guò)D作MN∥AC,交BC與于N,過(guò)A′作A′F∥AC,交BC的延長(zhǎng)線于F,延長(zhǎng)A′E交直線DN于M,

∵A′E⊥AC,
∴A′M⊥MN,A′E⊥A′F,
∴∠M=∠MA′F=90°,
∵∠ACB=90°,
∴∠F=∠ACB=90°,
∴四邊形MA′FN是矩形,
∴MN=A′F,F(xiàn)N=A′M,
由翻折得:A′D=AD=5,
Rt△A′MD中,∴DM=3,A′M=4,
∴FN=A′M=4,
Rt△BDN中,∵BD=5,
∴DN=4,BN=3,
∴A′F=MN=DM+DN=3+4=7,
BF=BN+FN=3+4=7,
Rt△ABF中,由勾股定理得:A′B= =7
綜上所述,A′B的長(zhǎng)為 或7
故答案為: 或7
分兩種情況:
①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點(diǎn)的定義求出AD和BD的長(zhǎng),證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長(zhǎng),并由翻折的性質(zhì)得:∠DA′E=∠A,A′D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A′B= ;②如圖2,作輔助線,構(gòu)建矩形A′MNF,同理可以求出A′B的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( 。
A.∠ADE=20°
B.∠ADE=30°
C.∠ADE=∠ADC
D.∠ADE=∠ADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的兩個(gè)頂點(diǎn)A , D分別在x軸和y軸上,CEy軸于點(diǎn)E , OA=2,∠ODA=30°.若反比例函數(shù)y 的圖象過(guò)CE的中點(diǎn)F , 則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)C,若ACAB=12,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,CD⊥AB于點(diǎn)D,⊙D經(jīng)過(guò)點(diǎn)B,與BC交于點(diǎn)E,與AB交與點(diǎn)F.已知tanA= ,cot∠ABC= ,AD=8.

(1)求⊙D的半徑;
(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+2bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的右側(cè)),且與y軸正半軸交于點(diǎn)C,已知A(2,0)
(1)當(dāng)B(﹣4,0)時(shí),求拋物線的解析式;
(2)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)為P,當(dāng)tan∠OAP=3時(shí),求此拋物線的解析式;
(3)O為坐標(biāo)原點(diǎn),以A為圓心OA長(zhǎng)為半徑畫⊙A,以C為圓心, OC長(zhǎng)為半徑畫圓⊙C,當(dāng)⊙A與⊙C外切時(shí),求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1、l2、l3分別過(guò)正方形ABCD的三個(gè)頂點(diǎn)A,B,D,且相互平行,若l1與l2的距離為1,l2與l3的距離為1,則該正方形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算:(﹣1)3﹣( 2× +6×|﹣ |
(2)化簡(jiǎn)并求值:( )÷ ,其中a=1,b=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案