【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)EFBC上,且CF=BE,連接DE,過點(diǎn)FFGAB于點(diǎn)G

1)如圖1,若∠B=60°,DE平分∠ADC,且 ,,求平行四邊形ABCD的面積.

2)點(diǎn)HGF上,且HE=HF,延長(zhǎng)EHACCD于點(diǎn)OQ,連接AQ,若AC=BC=EQ,∠EQC=45°,求證:

【答案】118+9;(2)見詳解.

【解析】

1)由角平分線的定義及平行四邊形的性質(zhì),得CD=CE=6,從而得CF=,進(jìn)而得BC=6+.過點(diǎn)AAMBC于點(diǎn)M,得AM= ,根據(jù)平行四邊形的面積公式,即可求解.

2)過點(diǎn)CCNEQ于點(diǎn)N,其延長(zhǎng)線交AD于點(diǎn)K,先證BGFCNE(AAS),再證ACKQEC(ASA),進(jìn)而即可得到結(jié)論.

1)∵DE平分∠ADC,

∴∠ADE=CDE,

∵四邊形ABCD是平行四邊形,

ADBC

∴∠ADE=∠CED,

∴∠CED=∠CDE,

CD=CE=6,

CF=,

CF=BE,

BE=,

BC=6+

過點(diǎn)AAMBC于點(diǎn)M

∵∠B=60°,AB=CD=6

∴∠BAM=30°,

BM=3,

AM=BM=

∴平行四邊形ABCD的面積=(6+×=18+9;

2)過點(diǎn)CCNEQ于點(diǎn)N,其延長(zhǎng)線交AD于點(diǎn)K,

∠EQC=45°,

△CNQ為等腰直角三角形,

∠NQC=∠NCQ=45°,且CQ=CN,

HE=HF,

∠HEF=∠HFE,

FGAB,CNEQ,

∠FGB=∠ENC=90°,

BE=CF,

BF=CE,

△BGF≌△CNE(AAS),

BG=CN,∠B=∠ECN,

CQ=BG,

又∵AC=BC=AD,

∠D=∠ACD,

又∵∠B=D

∴∠ECN=∠ACD,

∠KAC=∠BCA=∠NCQ=45°,

∠BAC=∠ACD=∠B=∠CDA=ECN =67.5°,

∠ACK= ECN-BCA =22.5°,∠QEC=180°-90°-∠ECN =22.5°,

即:∠ACK=QEC,

又∵∠KAC=∠CQE=45°,AC=QE,

△ACK≌△QEC(ASA),

CK=CE,

∵∠CDA=67.5°,∠NCQ=45°,

∴∠CKD=180°-45°-67.5°=67.5°,

∴∠CKD=CDA,

CK=CD,

CE=CD,

CD=CQ+QD=BG+DQ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,對(duì)角線交于點(diǎn),上任意一點(diǎn),連接并延長(zhǎng),交于點(diǎn),連接,

1)求證:四邊形是平行四邊形;

2)若,,.求出的邊上的高的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點(diǎn)OOFBCF,若BD=8cm,AE=2cm,則OF的長(zhǎng)度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l是經(jīng)過點(diǎn)(1,0)且與y軸平行的直線.Rt△ABC中直角邊AC=4,BC=3.將BC邊在直線l上滑動(dòng),使A,B在函數(shù)的圖象上.那么k的值是

A 3 B.6 C.12 D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF是正方形ABCD的邊CD上兩個(gè)動(dòng)點(diǎn),滿足DECF.連接AEBD于點(diǎn)I,連接BFCI于點(diǎn)H,GBC邊上的中點(diǎn).若正方形的邊長(zhǎng)為4,則線段DH長(zhǎng)度的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①所有銳角三角函數(shù)值都為正數(shù);②解直角三角形時(shí)只需已知除直角外的兩個(gè)元素;③RtABC中,B=90°,則sin2A+cos2A=1;④RtABC中,A=90°,則tanCsinC=cosC.其中正確的命題有( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某船自西向東航行,在處測(cè)得某島在北偏東的方向上,前進(jìn)海里后到達(dá),此時(shí),測(cè)得海島在北偏東的方向上,要使船與海島最近,則船應(yīng)繼續(xù)向東前進(jìn)________海里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了改善辦公條件,計(jì)劃從廠家購買、兩種型號(hào)電腦.已知每臺(tái)種型號(hào)電腦價(jià)格比每臺(tái)種型號(hào)電腦價(jià)格多01萬元,且用10萬元購買種型號(hào)電腦的數(shù)量與用8萬元購買種型號(hào)電腦的數(shù)量相同.求、兩種型號(hào)電腦每臺(tái)價(jià)格各為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,給出下列說法:

②方程的根為,;;④當(dāng)時(shí),值的增大而增大;⑤當(dāng)時(shí),其中,正確的說法有________(請(qǐng)寫出所有正確說法的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案