【題目】如圖,射線交一圓于點,,射線交該圓于點,且 .

1)判斷的數(shù)量關(guān)系.(不必證明)

2)利用尺規(guī)作圖,分別作線段的垂直平分線與的平分線,兩線交于點(保留作圖痕跡,不寫作法),求證:平分.

【答案】1AC=AE;(2)圖見解析,證明見解析

【解析】

1)作OP⊥AMOQ⊥ANQ,連接AO,BO,DO.證△APO≌△AQO,由BC=DE,得CP=EQ后得證;
2)同AC=AE得∠ECM=CEN,由CE=EF得∠FCE=FEC=MCE=CEN得證.

證明:(1)OPAMP,OQANQ,連接AO,BO,DO.

BC=DE,

BP=DQ

又∵OB=OD,

OBPODQ,

OP=OQ.

BP=DQ=CP=EQ.

直角三角形APOAQO中,

AO=AO,OP=OQ,

APOAQO.

AP=AQ.

CP=EQ,

AC=AE.

2)作圖如圖所示

證明:∵AC=AE,∴,

, 由于AFCE的垂直平分線,且CF平分,

CF=EF.

因此EF平分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室里的飲水機接通電源就進(jìn)入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時水溫)與開機后用時)成反比例關(guān)系,直至水溫降至30℃,飲水機關(guān)機,飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時接通電源,水溫)與時間)的關(guān)系如圖所示:

1)分別寫出水溫上升和下降階段之間的函數(shù)關(guān)系式;

2)怡萱同學(xué)想喝高于50℃的水,請問她最多需要等待多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)過,兩點,將點B到該拋物線對稱軸的距離記作,且滿足,則實數(shù)的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,ACBC,DAB邊的中點,連接CD,點PBC邊上一點,把△PBD沿PD翻折,點B落在點E處,設(shè)PEACF

1)如圖1,求證:△PCF的周長=CD

2)若點PBC邊的延長線上一點,(1)中結(jié)論是否仍然成立,若成立,請證明;若不成立,線段PC、CF、PF、CD之間是否存在其它的數(shù)量關(guān)系,畫出圖形并證明.

3)如圖2,設(shè)DEACG.若∠FPC30°,CD3,直接寫出FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊和等邊中,,點P的高上(點與點不重合),點在點的左側(cè),連接,.

1)求證:;

2)當(dāng)點與點重合時,延長于點,請你在圖2中作出圖形,并求出的長;

3)直接寫出線段長度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線軸交于、兩點,與軸交于點,其頂點為點,點的坐標(biāo)為(0,-1),該拋物線與交于另一點,連接.

1)求該拋物線的解析式,并用配方法把解析式化為的形式;

2)若點上,連接,求的面積;

3)一動點從點出發(fā),以每秒1個單位的速度沿平行于軸方向向上運動,連接,設(shè)運動時間為秒(>0),在點的運動過程中,當(dāng)為何值時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,直線軸交于點,經(jīng)過點的拋物線的對稱軸是

1)求拋物線的解析式.

2)平移直線經(jīng)過原點,得到直線,點是直線上任意一點,軸于點,軸于點,若點在線段上,點在線段的延長線上,連接,,且.求證:

3)若(2)中的點坐標(biāo)為,點軸上的點,點軸上的點,當(dāng)時,拋物線上是否存在點,使四邊形是矩形?若存在,請求出點的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線a≠0)與y軸交與點C03),與x軸交于AB兩點,點B坐標(biāo)為(4,0),拋物線的對稱軸方程為x=1

1)求拋物線的解析式;

2)點MA點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點NB點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達(dá)終點時,另一個點也停止運動,設(shè)△MBN的面積為S,點M運動時間為t,試求St的函數(shù)關(guān)系,并求S的最大值;

3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線yx2x軸交于點B,與y軸交于點C,二次函數(shù)yx2+bx+c的圖象經(jīng)過B,C兩點,且與x軸的負(fù)半軸交于點A

1)直接寫出:b的值為   ;c的值為   ;點A的坐標(biāo)為   ;

2)點M是線段BC上的一動點,動點D在直線BC下方的二次函數(shù)圖象上.設(shè)點D的橫坐標(biāo)為m

如圖1,過點DDMBC于點M,求線段DM關(guān)于m的函數(shù)關(guān)系式,并求線段DM的最大值;

若△CDM為等腰直角三角形,直接寫出點M的坐標(biāo)   

查看答案和解析>>

同步練習(xí)冊答案