【題目】在以點O為原點的平面直角坐標系中,邊長為1的正方形OABC的兩頂點A,C分別在y軸,軸的正半軸上,現(xiàn)將正方形OABC繞點О順時針旋轉(zhuǎn),當點A第一次落在直線上時,停止轉(zhuǎn)動,旋轉(zhuǎn)過程中,AB邊交直線于點M,BC邊交軸于點N.
(1)旋轉(zhuǎn)停止時正方形旋轉(zhuǎn)的度數(shù)是_________.
(2)在旋轉(zhuǎn)過程中,當MN和AC平行時,
①與是否全等?此時正方形OABC旋轉(zhuǎn)的度數(shù)是多少?
②直接寫出的周長的值,并判斷這個值在正方形OABC的旋轉(zhuǎn)過程中是否發(fā)生變化.
【答案】(1)45°;(2)①全等;22.5°;②的周長為,在正方形OABC的旋轉(zhuǎn)過程中,的周長不發(fā)生變化.
【解析】
(1)根據(jù)直線y=x圖象上點的特點,得出線y=x與y軸的夾角是45°,即可得出求得邊OA旋轉(zhuǎn)的角度;
(2)①利用SAS得出全等,根據(jù)正方形一個內(nèi)角的度數(shù)求出∠AOM的度數(shù),即可得出答案;
②利用全等把△MBN的各邊整理到成與正方形的邊長有關的式子即可.
(1)∵A點第一次落在直線上時停止旋轉(zhuǎn),直線與y軸的夾角是,
∴旋轉(zhuǎn)了45°;
(2)①∵,
∴,,
∴,
∴,
又∵,
∴,
∵在和中,
,
∴,
∴
,
∴旋轉(zhuǎn)過程中,當MN和AC平行時,正方形OABC旋轉(zhuǎn)的度數(shù)為.
②的周長的值為2,且在正方形OABC的旋轉(zhuǎn)過程中不發(fā)生變化.
理由如下:如圖所示,延長BA交y軸于點E,
則,
∵,
∴,
又∵,,
在和中,
∴,
∴,.
在和中,
,
∴,
∴.
∴,
∴的周長為.
∴在正方形OABC的旋轉(zhuǎn)過程中,的周長不發(fā)生變化.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是AOB內(nèi)任意一點,OP=10cm,點P與點關于射線OA對稱,點P與點關于射線OB對稱,連接交OA于點C,交OB于點D,當△PCD的周長是10cm時,∠AOB的度數(shù)是______度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學學習中,及時對知識進行歸納和整理是改善學習的重要方法.善于學習的小明在學習了一次方程(組)、一元一次不等式和一次函數(shù)后,對照圖形,把相關知識歸納整理如下:
一次函數(shù)與方程(組)的關系:
一次函數(shù)與不等式的關系:
(1)請你根據(jù)以上方框中的內(nèi)容在下面的數(shù)字序號后寫出相應的結(jié)論:
①______________________; ②______________________,
③______________________; ④______________________.
(2)如果點C的坐標為,那么不等式的解集是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船航行到B處時,測得小島A在船的北偏東60°的方向上,輪船從B處繼續(xù)向正東方向航行100海里到達C處時,測得小島A在船的北偏東30°的方向上,AD⊥BC于點D,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.
(1)分別求每臺型, 型挖掘機一小時挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八(1)班五位同學參加學校舉辦的數(shù)學競賽,試卷中共有20道題,規(guī)定每題答對得5分,答錯扣2分,未答得0分。賽后A,B, C,D,E五位同學對照評分標準回憶并記錄了自己的答題情況(E同學只記得有7道題未答),具體如下表:
參賽同學 | 答對題數(shù) | 答錯題數(shù) | 未答題數(shù) |
A | 19 | 0 | 1 |
B | 17 | 2 | 1 |
C | 15 | 2 | 3 |
D | 17 | 1 | 2 |
E | / | / | 7 |
(1)根據(jù)以上信息,求A,B,C,D四位同學成績的平均分;
(2)最后獲知:A,B,C,D,E五位同學成績分別是95分,81分,64分,83分,58分.
①求E同學的答對題數(shù)和答錯題數(shù);
②經(jīng)計算,A,B,C,D四位同學實際成績平均分是80.75分,與(1)中算得的平均分不相符,發(fā)現(xiàn)是其中一位同學記錯了自己的答題情況.請指出哪位同學記錯了,并寫出他的實際答題情況(直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.
(1)求拋物線解析式;
(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標;若不存在,請說明理由;
(3)坐標平面內(nèi)是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標,并求出平行四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個零件的形狀如圖1所示,按規(guī)定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如圖2所示.
圖1 圖2
(1)你認為這個零件符合要求嗎?為什么?
(2)求這個零件的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com