如圖,點(diǎn)E,F(xiàn)分別在OA,OB上,DE=DF,∠OED+∠OFD=180°,求證:OD平分∠AOB.
分析:過點(diǎn)D作DM⊥OA于M,DN⊥OB于N,進(jìn)而得出△EDM≌△FDN,由全等三角形的性質(zhì)得出DM=DN,從而得出結(jié)論.
解答:解:過點(diǎn)D作DM⊥OA于M,DN⊥OB于N,
∴∠DME=∠DNF=90°.
∵∠OED+∠OFD=180°,且∠OED+∠MED=180°,
∴∠MED=∠OFD.
在△EDM和△FDN中,
∠DME=∠DNF
∠MED=∠OFD
DE=DF
,
∴△EDM≌△FDN,
∴DM=DN.
∵DM⊥OA,DN⊥OB,
∴OD平分∠AOB.
點(diǎn)評:本題考查了垂直的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,角平分線的性質(zhì)的運(yùn)用,解答時(shí)得出三角形全等是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D、E分別在△ABC的邊上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B分別在一次函數(shù)y=x,y=8x的圖象上,其橫坐標(biāo)分別為a,b (a>0,b>0 ).若直線AB為一次函數(shù)y=kx+m的圖象,則當(dāng)
b
a
是整數(shù)時(shí),滿足條件的整數(shù)k的值共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,點(diǎn)M、N分別在正三角形ABC的BC、CA邊上,且BM=CN,AM、BN交于點(diǎn)Q,求∠AQN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點(diǎn)D、E分別在∠BAC的邊上,連接DC、BE,若∠B=∠C,那么補(bǔ)充下列一個條件后,仍無法判定△ABE≌△ACD的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B分別在直線l1、l2上,過點(diǎn)A作到l2的距離AM,過點(diǎn)B作直線l3∥l1

查看答案和解析>>

同步練習(xí)冊答案