【題目】(1)觀察下列圖形與等式的關(guān)系,并填空:
(2)利用(1)中結(jié)論,解決下列問(wèn)題:
①1+3+5+…+203= ;
②計(jì)算:101+103+105+…+199;
【答案】(1)42=16; n2;(2)①10404; ②7500
【解析】
(1)可以看出連續(xù)奇數(shù)的和等于數(shù)的個(gè)數(shù)的平方;
(2)①由1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…可以看出連續(xù)奇數(shù)的和等于數(shù)的個(gè)數(shù)的平方,因此得到一般規(guī)律.
②根據(jù)1到199的和減去1到99的和即可.
(1)1+3+5+7=16=42=16;1+3+5+7+9….+(2n-1)=n2,
(2)①因?yàn)?/span>1+3=4=22,
1+3+5=9=32,
1+3+5+7=16=42,
1+3+5+7+9=25=52,
…
1+3+5+7+…+203=1022=10404,
②101+103+105+…+199=(1+3+5+…+199)-(1+3+5+…+99)=1002-502=7500.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P.
(1)如圖①,若∠COB=2∠PCB,求證:直線PC是⊙O的切線;
(2)如圖②,若點(diǎn)M是AB的中點(diǎn),CM交AB于點(diǎn)N,MNMC=36,求BM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是( ).
A. 5 B. 5 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2),B(1,3),△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1 .
(1)點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)P的坐標(biāo)為;
(2)在網(wǎng)格內(nèi)畫出△A1OB1;
(3)點(diǎn)A1、B1的坐標(biāo)分別為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,AC=CP.
(1)求證:CP是⊙O的切線;
(2)若AB=4 ,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長(zhǎng);
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,△ADC和△BDE均為等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,連接CE,點(diǎn)G為CE的中點(diǎn),過(guò)點(diǎn)E作AC的平行線與線段AG延長(zhǎng)線交于點(diǎn)F.
(1)當(dāng)A,D,B三點(diǎn)在同一直線上時(shí)(如圖1),求證:G為AF的中點(diǎn);
(2)將圖1中△BDE繞點(diǎn)D旋轉(zhuǎn)到圖2位置時(shí),點(diǎn)A,D,G,F(xiàn)在同一直線上,點(diǎn)H在線段AF的延長(zhǎng)線上,且EF=EH,連接AB,BH,試判斷△ABH的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說(shuō)明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CF,連接EF. 若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com