已知數(shù)學(xué)公式
觀察:數(shù)學(xué)公式,數(shù)學(xué)公式通過觀察,求:數(shù)學(xué)公式的值.

解:∵+(ab-2)2=0,
,解得,
∴原式=+++…+
=+-+-+…+-
=1-
=
分析:先根據(jù)非負數(shù)的性質(zhì)求出a、b的值,再把a、b的值代入代數(shù)式進行計算即可.
點評:本題考查的是分式的化簡求值,根據(jù)題意找出規(guī)律是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)
問題情境
已知矩形的面積為aa為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則yx的函數(shù)關(guān)系式為
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
① 填寫下表,畫出函數(shù)的圖象:
x




1
2
3
4

y

 
 
 
 
 
 
 

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2bxca≠0)的最大(小)值時,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)(x>0)的最小值.
解決問題
⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇鹽城第一初級中學(xué)九年級下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

(本題滿分12分)
問題情境
已知矩形的面積為aa為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則yx的函數(shù)關(guān)系式為
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
① 填寫下表,畫出函數(shù)的圖象:

x




1
2
3
4

y

 
 
 
 
 
 
 

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2bxca≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)(x>0)的最小值.
解決問題
⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省湖州市長興縣九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為
探索研究
(1)我們可以借鑒學(xué)習(xí)函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x1234
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)(x>0)的最小值.==
=≥2
當(dāng)=0,即x=1時,函數(shù)(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年四川省成都市嘉祥外國語學(xué)校中考數(shù)學(xué)模擬試卷(5月份)(解析版) 題型:解答題

問題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為
探索研究
(1)我們可以借鑒學(xué)習(xí)函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
1填寫下表,畫出函數(shù)的圖象:
x1234
y
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,除了通過觀察圖象,還可以通過配方得到.同樣通過配方也可以求函數(shù)(x>0)的最小值.==
=≥2
當(dāng)=0,即x=1時,函數(shù)(x>0)的最小值為2.
解決問題
(2)解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

同步練習(xí)冊答案