(2010•朝陽區(qū)二模)閱讀下列材料并解答后面的問題:利用完全平方公式(a±b)2=a2±2ab+b2,通過配方可對a2+b2進(jìn)行適當(dāng)?shù)淖冃,如a2+b2=(a+b)2-2ab或a2+b2=(a-b)2+2ab.從而使某些問題得到解決.例:已知a+b=5,ab=3,求a2+b2的值.
解:a2+b2=(a+b)2-2ab=52-2×3=19.
問題:(1)已知a+=6,則a2+=______;
(2)已知a-b=2,ab=3,求a4+b4的值.
【答案】分析:(1)把已知條件兩邊平方,然后整理即可求解;
(2)先根據(jù)a2+b2=(a-b)2+2ab求出a2+b2的值,然后根據(jù)所求結(jié)果a2b2=9同理即可求出a4+b4的值.
解答:解:(1)∵=a2+2
∴a2+=-2=34;

(2)∵a-b=2,ab=3,
∴a2+b2=(a-b)2+2ab,
=4+2×3,
=10,
a2b2=9,
∴a4+b4=(a2+b22-2a2b2
=100-2×9,
=82.
點評:本題考查了完全平方公式,根據(jù)完全平方公式整理成已知條件的形式是求解的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖,在邊長在2的正方形ABCD中,點F在x軸上一點,CF=1,過點B作BF的垂線,交y軸于點E;
(1)求過點E、B、F的拋物線的解析式;
(2)將∠EBF繞點B順時針旋轉(zhuǎn),角的一邊交y軸正半軸于點M,另一邊交x軸于點N,設(shè)BM與(1)中拋物線的另一交點為G,當(dāng)點G的橫坐標(biāo)為時,EM與NO有怎樣的數(shù)量關(guān)系?請說明你的結(jié)論;
(3)點P在(1)中的拋物線上,且PE與y軸所成銳角的正切值為,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖,反比例函數(shù)y=(x>0)的圖象經(jīng)過點A.
(1)求反比例函數(shù)的解析式;
(2)若點B在y=(x>0)的圖象上,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年北京市中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2010•朝陽區(qū)二模)全球可被人類利用的淡水總量僅占總水量的0.00003,因此珍惜水,保護(hù)水是我們每一位公民義不容辭的責(zé)任,其中數(shù)字0.00003用科學(xué)記數(shù)法表示為( )
A.3×10-4
B.3×10-5
C.0.3×10-4
D.0.3×10-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖1,四邊形ABCD,將頂點為A的角繞著頂點A順時針旋轉(zhuǎn),角的一條邊與DC的延長線交于點F,角的另一邊與CB的延長線交于點E,連接EF.
(1)如果四邊形ABCD為正方形,當(dāng)∠EAF=45°時,有EF=DF-BE.請你思考如何證明這個結(jié)論(只需思考,不必寫出證明過程);
(2)如圖2,如果在四邊形ABCD中,AB=AD,∠ABC=∠ADC=90°,當(dāng)∠EAF=∠BAD時,EF與DF、BE之間有怎樣的數(shù)量關(guān)系?請寫出它們之間的關(guān)系式(只需寫出結(jié)論);
(3)如圖3,如果在四邊形ABCD中,AB=AD,∠ABC與∠ADC互補(bǔ),當(dāng)∠EAF=∠BAD時,EF與DF、BE之間有怎樣的數(shù)學(xué)關(guān)系?請寫出它們之間的關(guān)系式并給予證明;
(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周長(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖,平行四邊形ABCD中,AD=8,CD=4,∠D=60°.點P與點Q是平行四邊形ABCD邊上的動點,點P以每秒1個單位長度的速度,從點C運動到點D,點Q以每秒2個單位長度的速度從點A→點B→點C運動,當(dāng)其中一個點到達(dá)終點時,另一個點隨之停止運動.點P與點Q同時出發(fā),設(shè)運動時間為t,△CPQ的面積為S.
(1)求S關(guān)于t的函數(shù)關(guān)系式;
(2)求出S的最大值;
(3)t為何值時,以△CPQ的一邊所在直線為軸翻折,翻折前后的兩個三角形所組成的四邊形是菱形?

查看答案和解析>>

同步練習(xí)冊答案