【題目】課本1.4有這樣一道例題:
問題4:用一根長22cm的鐵絲:
(1)能否圍成面積是30cm2的矩形?
(2)能否圍成面積是32cm2的矩形?
據(jù)此,一位同學提出問題:“用這根長22cm的鐵絲能否圍成面積最大的矩形?若能圍成,求出面積最大值;若不能圍成,請說明理由.”請你完成該同學提出的問題.
【答案】
(1)解:設當矩形的一邊長為x cm時,
根據(jù)題意得:x(11﹣x)=30,
整理得:x2﹣11x+30=0,
解得:x=5,或x=6,
當x=5時,11﹣x=6;
當x=6時,11﹣x=5;
即能圍成面積是30cm2的矩形,此時長和寬分別為5cm、6cm;
(2)解:根據(jù)題意得:x(11﹣x)=32,
整理得:x2﹣11x+32=0,
∵△=(﹣11)2﹣4×1×32<0,
方程無解,因此不能圍成面積是32cm2的矩形;
提出問題:能圍成;理由如下:
設當矩形的一邊長為x cm時,面積為y cm2.
由題意得:y=x( ﹣x)=﹣x2+11x=﹣(x﹣ )2+ ,
∵(x﹣ )2≥0,
∴﹣(x﹣ )2+ ≤ .
∴當x= 時,y有最大值= ,此時 ﹣x= .
答:當矩形的各邊長均為 cm時,圍成的面積最大,最大面積是 cm2.
【解析】(1)根據(jù)矩形的性質對邊相等,得到長+寬=11,求出能圍成面積是30cm2的矩形,此時長和寬分別為5cm、6cm;(2)同(1)根據(jù)矩形的面積公式列出等式,由△<0,得到方程無解,因此不能圍成面積是32cm2的矩形;討論當矩形的一邊長為x時,面積為y時,得到二次函數(shù),求出y的最大值.
科目:初中數(shù)學 來源: 題型:
【題目】小敏同學測量一建筑物CD的高度,她站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走30m,到達點F處測得樓頂C的仰角為45°(B,F,D在同一條直線上)。一直小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數(shù)據(jù): ≈1.732, ≈1.414,結果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點D在經過A,B,C三點的圓上(如圖①)
(1)[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側),那么點D還在經過A, B,C三點的圓上嗎?
(2)我們知道,如果點D不在經過A,B,C三點的圓上,那么點D要么在圓O外,要么在圓O內,以下該同學的想法說明了點D不在圓O外。
請結合圖④證明點D也不在⊙O外.
[結論]綜上可得結論:如圖②,如果∠ACB=∠ADB=a(點C,D在AB的同側),那么點D在經過A,B,C三點的圓上,即:點A、B、C、D四點共圓。
[應用]利用上述結論解決問題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點A順時針旋轉一個角度得△ADE,連接BE CD,延長CD交BE于點F,
圖⑤
①求證:點B、C、A、F四點共圓;②求證:BF=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為一位旅行者在早晨8時從城市出發(fā)到郊外所走的路程單位:千米與時間單位:時的變量關系的圖象.根據(jù)圖象回答問題:
在這個變化過程中,自變量是______ ,因變量是______ .
時所走的路程是多少?他休息了多長時間?
他從休息后直至到達目的地這段時間的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:小明根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究.
下面是小明的探究過程,請你解決相關問題:
在函數(shù)中,自變量x可以是任意實數(shù);
如表y與x的幾組對應值:
X | 0 | 1 | 2 | 3 | 4 | ||||||
Y | 0 | 1 | 2 | 3 | 2 | 1 | a |
______;
若,為該函數(shù)圖象上不同的兩點,則______;
如圖,在平面直角坐標系中,描出以上表中各對對應值為坐標的點,并根據(jù)描出的點,畫出該函數(shù)的圖象:
該函數(shù)有______填“最大值”或“最小值”;并寫出這個值為______;
求出函數(shù)圖象與坐標軸在第二象限內所圍成的圖形的面積;
觀察函數(shù)的圖象,寫出該圖象的兩條性質.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,完成下列說理過程
如圖,已知點A,O,B在同一條直線上,OE平分∠BOC,∠DOE=90°
求證:OD是∠AOC的平分線;
證明:如圖,因為OE是∠BOC的平分線,
所以∠BOE=∠COE.( 。
因為∠DOE=90°
所以∠DOC+∠ =90°
且∠DOA+∠BOE=180°﹣∠DOE= °.
所以∠DOC+∠ 。健螪OA+∠BOE.
所以∠ =∠ 。
所以OD是∠AOC的平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內心,以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )
A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線MN與x軸、y軸分別相交于B、A兩點,OA,OB的長滿足式子
(1)求A,B兩點的坐標;
(2)若點O到AB的距離為,求線段AB的長;
(3)在(2)的條件下,x軸上是否存在點P,使ΔABP使以AB為腰的等腰三角形,若存在請直接寫出滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線:與直線:交于點,則______.
【答案】-1
【解析】
將點A的坐標代入兩直線解析式得出關于m和b的方程組,解之可得.
解:由題意知,
解得,
故答案為:.
【點睛】
本題主要考查兩直線相交或平行問題,解題的關鍵是掌握兩直線的交點坐標必定同時滿足兩個直線解析式.
【題型】填空題
【結束】
11
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com