【題目】如圖,點(diǎn)A在反比例函數(shù)yx0)的圖象上,點(diǎn)BX軸的負(fù)半軸上,ABAO13,線段OA的垂直平分線交線段AB于點(diǎn)C,△BOC的周長(zhǎng)為23,則k的值為( )

A.60B.30C.60D.30

【答案】C

【解析】

ACx軸于D,如圖,利用垂直平分線的性質(zhì)得CA=CO,再利用等腰三角形的性質(zhì)和線段的等量代換可得到OB=10,接著利用等腰三角形的性質(zhì)得BD=OD=5,則利用勾股定理可計(jì)算出AD=12,所以A-5,12),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征求k的值.

解:作ACx軸于D,如圖,


∵線段OA的垂直平分線交線段AB于點(diǎn)C,
CA=CO
∵△BOC的周長(zhǎng)為23,
OB+BC+OC=23,
OB+BC+CA=23,即OB+BA=23,
OB=23-13=10
AB=AO,ADOB
BD=OD=5,
RtAOD中,

A-5,12),
k=-5×12=-60
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+x1x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線lyt(t)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個(gè)“M”形的新圖象.

(1)點(diǎn)A,B,D的坐標(biāo)分別為   ,   ,   ;

(2)如圖,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)E在△ABC內(nèi)(含邊界)時(shí),求t的取值范圍;

(3)如圖,當(dāng)t0時(shí),若Q是“M”形新圖象上一動(dòng)點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AEABC的角平分線.AE的垂直平分線交AB于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O,交AB于點(diǎn)F

1)求證:BC是⊙O的切線;

2)若AC2,tanB,求⊙O的半徑r的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點(diǎn)為A(-3,-3),此拋物線交x軸于O、 B兩點(diǎn).

(1)求此拋物線的解析式.

(2)求△AOB的面積 .

(3)若拋物線上另有點(diǎn)P滿足S△POB=S△AOB,請(qǐng)求出P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1CD交于點(diǎn)O,則四邊形AB1OD的面積是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子中有1個(gè)白球和2個(gè)紅球,這些球除顏色外都相同.

⑴如果從盒子中隨機(jī)摸出1個(gè)球,摸出紅色球的概率為_____________;

⑵若從盒子中隨機(jī)摸出一個(gè)球,記下顏色后放回,再從中隨機(jī)摸出一個(gè)球,請(qǐng)通過列表或畫樹狀圖的方法,求兩次摸到不同顏色球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)是4厘米,∠B60°,動(dòng)點(diǎn)P1厘米/秒的速度自A點(diǎn)出發(fā)沿AB方向運(yùn)動(dòng),動(dòng)點(diǎn)Q2厘米/秒的速度自B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng)至C點(diǎn)停止,同時(shí)P點(diǎn)也停止運(yùn)動(dòng)若點(diǎn)PQ同時(shí)出發(fā)運(yùn)動(dòng)了t秒,記△BPQ的面積為S厘米2,下面圖象中能表示St之間的函數(shù)關(guān)系的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角三角形ABC的兩條高線BE、CD相交于點(diǎn)OBECD

1)求證:BDCE;

2)判斷點(diǎn)O是否在∠BAC的平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣2,﹣2),B0,3),C3,3),D4,﹣2),y是關(guān)于x的二次函數(shù),拋物線y1經(jīng)過點(diǎn)A、B、C,拋物線y2經(jīng)過點(diǎn)BC、D,拋物線y3經(jīng)過點(diǎn)A、B、D,拋物線y4經(jīng)過點(diǎn)A、C、D.下列判斷:

四條拋物線的開口方向均向下;

當(dāng)x0時(shí),至少有一條拋物線表達(dá)式中的y均隨x的增大而減小;

拋物線y1的頂點(diǎn)在拋物線y2頂點(diǎn)的上方;

拋物線y4y軸的交點(diǎn)在點(diǎn)B的上方.

所有正確結(jié)論的序號(hào)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案