【題目】如圖,ΔABC中,AB=AC,點E,F在邊BC上,BE=CF,點DAF的延長線上,AD=AC

1)求證:ΔABEΔACF;

2)若∠BAE=30°,則∠ADC= (直接寫答案)

【答案】1)證明見解析;(275°.

【解析】

1)要證明ABE≌△ACF,由題意可得AB=AC,B=∠ACF,BE=CF,從而可以證明結(jié)論成立;

2)根據(jù)(1)中的結(jié)論和等腰三角形的性質(zhì)可以求得∠ADC的度數(shù).

1)證明:∵AB=AC,

∴∠B=ACF,

ABEACF中,

,,

∴△ABE≌△ACFSAS);

2)∵△ABE≌△ACF,∠BAE=30°,

∴∠BAE=CAF=30°,

AD=AC,

∴∠ADC=ACD,

∴∠ADC==75°,

故答案為:75°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸交于點A1,0),與y軸交于點B0,-2)。

1)求直線AB的解析式;

2)若直線AB上的點C在第一象限,且SAOC =2,求點C的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)軸上的A,B,C三點,給出如下定義:若其中一個點與其它兩個點的距離恰好滿足2倍的數(shù)量關(guān)系,則稱該點是其它兩個點的“聯(lián)盟點”.

例如數(shù)軸上點A,B,C所表示的數(shù)分別為1,3,4,此時點B是點A, C的“聯(lián)盟點”.

1)若點A表示數(shù)-2, 點B表示的數(shù)2,下列各數(shù),0,4,6所對應(yīng)的點分別C1C2 ,C3 ,C4,其中是點A,B的“聯(lián)盟點”的是 ;

(2)點A表示數(shù)-10, 點B表示的數(shù)30,P在為數(shù)軸上一個動點:

①若點P在點B的左側(cè),且點P是點A, B的“聯(lián)盟點”,求此時點P表示的數(shù);

②若點P在點B的右側(cè),點P,A, B中,有一個點恰好是其它兩個點的“聯(lián)盟點”,寫出此時點P表示的數(shù) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABO直徑,ACO的切線,BCO于點D(如圖1).

(1)若AB=2,∠B=30°,求CD的長;

(2) 取AC的中點E,連結(jié)DE(如圖2),求證:DEO相切.

【答案】(1);(2)見解析

【解析】分析:連接AD ,根據(jù)AC是⊙O的切線,AB是⊙O的直徑,得到∠CAB=ADB=90°,根據(jù)∠B=30°,解直角三角形求得的長度.

連接OD,AD.根據(jù)DE=CE=EA,EDA=EAD. 根據(jù)OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

詳解:(1)如圖,連接AD ,

AC是⊙O的切線,AB是⊙O的直徑,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如圖,連接OD,AD.

AC是⊙O的切線,AB是⊙O的直徑,

∴∠CAB=ADB=ADC=90°,

又∵EAC中點,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA,

∴∠ODA=DAO,

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又點D在⊙O上,因此DE與⊙O相切.

點睛:考查解直角三角形,圓周角定理,切線的判定與性質(zhì)等,屬于圓的綜合題,比較基礎(chǔ).注意切線的證明方法,是高頻考點.

型】解答
結(jié)束】
21

【題目】課外活動時間,甲、乙、丙、丁4名同學(xué)相約進(jìn)行羽毛球比賽.

(1)如果將4名同學(xué)隨機(jī)分成兩組進(jìn)行對打,求恰好選中甲乙兩人對打的概率;

(2)如果確定由丁擔(dān)任裁判,用“手心、手背”的方法在另三人中競選兩人進(jìn)行比賽.競選規(guī)則是:三人同時伸出“手心”或“手背”中的一種手勢,如果恰好只有兩人伸出的手勢相同,那么這兩人上場,否則重新競選.這三人伸出“手心”或“手背”都是隨機(jī)的,求一次競選就能確定甲、乙進(jìn)行比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018個正整數(shù)1,2,3,4,2018按如圖方式排列成一個表.

1)用如圖方式框住表中任意4個數(shù),記左上角的一個數(shù)為,則另三個數(shù)用含的式子表示出來,從小到大依次是__________、__________________________(請直接填寫答案);

2)用(1)中方式被框住的4個數(shù)之和可能等于2019嗎?如果可能,請求出的值;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)圖象交于第二,四象限內(nèi)A,B兩點,軸交于點C,軸交于點D.若點B的縱坐標(biāo)為,OA=5, .

(1)求反比例函數(shù)解析式;

(2)△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年元旦莫小貝在襄陽萬達(dá)廣場購進(jìn)一家商鋪,裝修后用于銷售某品牌的女裝.2018元旦莫小貝盤點時發(fā)現(xiàn):2017年自家店內(nèi)女裝的平均成本為4百元/,當(dāng)年的銷售量 (百件)與平均銷售價格 (百元/)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.

(1)請求出之間的函數(shù)關(guān)系式;

(2)若莫小貝購商鋪及裝修一共花了120萬元,請通過計算說明2017年莫小貝是賺還是虧?若賺,最多賺多少元?若虧,最少虧多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解家長和學(xué)生參與“防溺水教育”的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:

A.僅學(xué)生自己參與 B.家長和學(xué)生一起參與

C.僅家長自己參與 D.家長和學(xué)生都未參與

請根據(jù)圖中提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,共調(diào)查了_________名學(xué)生;

(2)補全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中計算類所對應(yīng)扇形的圓心角的度數(shù).

(3)根據(jù)抽樣調(diào)查結(jié)果,估計該校1500名學(xué)生中“家長和學(xué)生都未參與”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A1,A2,…,An均在直線y=x-1上,點B1,B2,…,Bn均在雙曲線y=-上,并且滿足A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標(biāo)為an(n為正整數(shù)).若a1=-1,則a2018_______

查看答案和解析>>

同步練習(xí)冊答案