【題目】九年級(jí)復(fù)學(xué)復(fù)課后,某校為了了解學(xué)生的疫情防控意識(shí)情況,在全校九年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的防控意識(shí)分成“A.很強(qiáng)”、“B.較強(qiáng)”、“C.一般”、“D.淡薄”四個(gè)層次,將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)本次共調(diào)查了 名學(xué)生,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果把疫情防控意識(shí)“很強(qiáng)或較強(qiáng)”視為合格,該校九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)合格的學(xué)生約有多少名?
(3)在“A.很強(qiáng)”的3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請(qǐng)用列表或畫(huà)樹(shù)狀圖法求出被選中的兩人恰好是一男生一女生的概率.
【答案】(1)30名,見(jiàn)解析;(2)300名;(3)樹(shù)狀圖見(jiàn)解析,
【解析】
(1)由D選項(xiàng)的人數(shù)及其百分比可得本次共調(diào)查的人數(shù);由本次共調(diào)查的人數(shù)減去A、C、D選項(xiàng)的人數(shù)求得B的人數(shù)即可補(bǔ)全條形統(tǒng)計(jì)圖;
(2)總?cè)藬?shù)乘以樣本中A、B選項(xiàng)的比例可得;
(3)畫(huà)樹(shù)狀圖列出所有等可能結(jié)果,根據(jù)概率公式求解可得.
解:(1)本次共調(diào)查的學(xué)生人數(shù)為6÷20%=30(名);
故答案為:30;
“B.較強(qiáng)”的學(xué)生人數(shù)為30396=12(名),將條形統(tǒng)計(jì)圖補(bǔ)充完整如圖所示:
(2)估計(jì)合格的學(xué)生約有=300(名);
(3)畫(huà)樹(shù)狀圖如下:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月以來(lái),湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實(shí)該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強(qiáng).為了有效地避免交叉感染,需要采取以下防護(hù)措施:①戴口罩;②勤洗手;③少出門(mén);④重隔離;⑤捂口鼻;⑥謹(jǐn)慎吃.某公司為了解員工對(duì)防護(hù)措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過(guò)網(wǎng)上問(wèn)卷調(diào)查的方式進(jìn)行了隨機(jī)抽樣調(diào)查(每名員工必須且只能選擇一項(xiàng)),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)上面的信息,解答下列問(wèn)題
(1)本次共調(diào)查了_______名員工,條形統(tǒng)計(jì)圖中________;
(2)若該公司共有員工1000名,請(qǐng)你估計(jì)不了解防護(hù)措施的人數(shù);
(3)在調(diào)查中,發(fā)現(xiàn)有4名員工對(duì)防護(hù)措施很了解,其中有3名男員工、1名女員工.若準(zhǔn)備從他們中隨機(jī)抽取2名,讓其在公司群內(nèi)普及防護(hù)措施,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)b,c是常數(shù),圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)和之間,對(duì)稱軸是對(duì)于下列說(shuō)法:;;;為實(shí)數(shù));(5)當(dāng)時(shí),,其中正確的是( )
A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(4)D.(3)(4)(5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B在第一象限,BA⊥x軸于點(diǎn)A,反比例函數(shù)y=(x>0)的圖象與線段AB相交于點(diǎn)C,C是線段AB的中點(diǎn),點(diǎn)C關(guān)于直線y=x的對(duì)稱點(diǎn)C'的坐標(biāo)為(m,6)(m≠6),若△OAB的面積為12,則k的值為( 。
A.4B.6C.8D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y1的圖象與反比例函數(shù)y2的圖象相交于點(diǎn)A(2,-4),下列說(shuō)法正確的是( )
A.反比例函數(shù)y2的解析式是
B.兩個(gè)函數(shù)圖象的另一交點(diǎn)坐標(biāo)為(2,4)
C.當(dāng)x<-2或0<x<2時(shí),y1>y2
D.正比例函數(shù)y1與反比例函數(shù)y2都隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=4,BC=8,折疊ABCD使點(diǎn)A與點(diǎn)C重合,折痕為EF,則EF的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O 中,AB 為直徑,點(diǎn) P 在BA 的延長(zhǎng)線上,PC 為⊙O 的切線,過(guò)點(diǎn) A 作AH⊥PC 于點(diǎn) H, 交⊙O 于點(diǎn) D,連接 BC、BD、AC.
(1)如圖 1,求證:∠CAH=∠CAB;
(2)如圖 2,過(guò)點(diǎn) C 作 CE⊥AB 于點(diǎn) E,求證:BD=2CE;
(3)如圖 3,在(2)的條件下,點(diǎn) F 在BC 上,連接 DF、EF,若 BG=2AE,∠CFE=45°,OG=1,求線段 EF 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)y=ax2+4ax+c(a<0)的圖像與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,DH⊥x軸于H與AC交于點(diǎn)E.連接CD、BC、BE.若S△CBE∶S△ABE=2∶3,
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)連結(jié)BD,是否存在數(shù)值a,使得∠CDB=∠BAC?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若AC恰好平分∠DCB,求二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點(diǎn)P由B出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC.
(2)設(shè)△AQP面積為S(單位:cm2),當(dāng)t為何值時(shí),S取得最大值,并求出最大值.
(3)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com