【題目】計(jì)算:
(1)( +1)0+|﹣2|﹣31
(2)解不等式組:

【答案】
(1)

解:( +1)0+|﹣2|﹣31

=1+2﹣

=2


(2)

解:

不等式①的解集為:x<4,

不等式②的解集為:x>2.

故不等式組的解集為:2<x<4


【解析】(1)本題涉及零指數(shù)冪、絕對(duì)值、負(fù)整數(shù)指數(shù)冪3個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果;(2)根據(jù)不等式的性質(zhì)求出不等式的解集,根據(jù)找不等式組解集的規(guī)律找出即可.本題主要考查了實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見(jiàn)的計(jì)算題型.解決此類題目的關(guān)鍵是熟練掌握零指數(shù)冪、絕對(duì)值、負(fù)整數(shù)指數(shù)冪等考點(diǎn)的運(yùn)算.同時(shí)考查了解一元一次不等式組,解不等式組應(yīng)遵循的原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.
【考點(diǎn)精析】利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示正確的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△ABO≌△ADO.下列結(jié)論:
①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.
其中所有正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測(cè)P處,仰角分別為α、β,且tanα= ,以O(shè)為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.

(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小宇想測(cè)量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測(cè)得∠ACF=45°,再向前行走100米到點(diǎn)D處,測(cè)得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某學(xué)校開(kāi)展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛(ài)鳥(niǎo)護(hù)鳥(niǎo)”為主題的遠(yuǎn)足活動(dòng).已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時(shí)從學(xué)校出發(fā),到達(dá)君山島時(shí),服務(wù)人員所花時(shí)間比學(xué)生少用了3.6小時(shí),求學(xué)生步行的平均速度是多少千米/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】尤秀同學(xué)遇到了這樣一個(gè)問(wèn)題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學(xué)仔細(xì)分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來(lái),再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證

(1)請(qǐng)你根據(jù)以上解題思路幫尤秀同學(xué)寫(xiě)出證明過(guò)程.
(2)利用題中的結(jié)論,解答下列問(wèn)題:在邊長(zhǎng)為3的菱形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長(zhǎng)交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求MG2+MH2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)數(shù)值轉(zhuǎn)換器.

(1)當(dāng)輸入x=25時(shí),求輸出的y的值;

(2)是否存在輸入x的值后,始終輸不出y的值?如果存在,請(qǐng)直接寫(xiě)出所有滿足要求的x值;如果不存在,請(qǐng)說(shuō)明理由;

(3)輸入一個(gè)兩位數(shù)x,恰好經(jīng)過(guò)三次取算術(shù)平方根才能輸出無(wú)理數(shù)y,則x=________(只填一個(gè)即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案