【題目】如圖,自來(lái)水廠A和村莊B在小河l的兩側(cè),現(xiàn)要在A,B間鋪設(shè)一條輸水管道.為了搞好工程預(yù)算,需測(cè)算出A,B間的距離.一小船在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q處,測(cè)得A位于北偏西49°方向,B位于南偏西41°方向.

(1)線段BQ與PQ是否相等?請(qǐng)說(shuō)明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)

【答案】
(1)

解:線段BQ與PQ相等.

證明:∵∠PQB=90°﹣41°=49°,

∠BPQ=90°﹣24.5°=65.5°,

∴∠PBQ=180°﹣49°﹣65.5°=65.5°,

∴∠BPQ=∠PBQ,

∴BQ=PQ


(2)

解:∠AQB=180°﹣49°﹣41°=90°,

∠PQA=90°﹣49°=41°,

∴AQ= =1600,

BQ=PQ=1200,

∴AB2=AQ2+BQ2=16002+12002,

∴AB=2000,

答:A、B的距離為2000m


【解析】(1)首先由已知求出∠PBQ和∠BPQ的度數(shù)進(jìn)行比較得出線段BQ與PQ是否相等;(2)先由已知求出∠PQA,再由直角三角形PQA求出AQ,由(1)得出BQ=PQ=1200,又由已知得∠AQB=90°,所以根據(jù)勾股定理求出A,B間的距離.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用關(guān)于方向角問(wèn)題,掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開(kāi)展“感動(dòng)中國(guó)2013年度人物”先進(jìn)事跡知曉情況專(zhuān)題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為A、B、C、D四類(lèi).其中,A類(lèi)表示“非常了解”,B類(lèi)表示“比較了解”,C類(lèi)表示“基本了解”,D類(lèi)表示“不太了解”,劃分類(lèi)別后的數(shù)據(jù)整理如下表:

類(lèi)別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06


(1)表中的a= , b=
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類(lèi)別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類(lèi)別為C的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)A(2,0),B(0,4),∠AOB的平分線交AB于C,一動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度,沿y軸向點(diǎn)B作勻速運(yùn)動(dòng),過(guò)點(diǎn)P且平行于AB的直線交x軸于Q,作P、Q關(guān)于直線OC的對(duì)稱(chēng)點(diǎn)M、N.設(shè)P運(yùn)動(dòng)的時(shí)間為t(0<t<2)秒.

(1)求C點(diǎn)的坐標(biāo),并直接寫(xiě)出點(diǎn)M、N的坐標(biāo)(用含t的代數(shù)式表示);
(2)設(shè)△MNC與△OAB重疊部分的面積為S.
①試求S關(guān)于t的函數(shù)關(guān)系式;
②在圖2的直角坐標(biāo)系中,畫(huà)出S關(guān)于t的函數(shù)圖象,并回答:S是否有最大值?若有,寫(xiě)出S的最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.

1作出與△ABC關(guān)于x軸對(duì)稱(chēng)的圖形△A1B1C1

2)求出A1,B1,C1三點(diǎn)坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某課題研究小組就圖形面積問(wèn)題進(jìn)行專(zhuān)題研究,他們發(fā)現(xiàn)如下結(jié)論: ①有一條邊對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于這條邊上的對(duì)應(yīng)高之比;
②有一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于夾這個(gè)角的兩邊乘積之比;

現(xiàn)請(qǐng)你繼續(xù)對(duì)下面問(wèn)題進(jìn)行探究,探究過(guò)程可直接應(yīng)用上述結(jié)論.(S表示面積)

問(wèn)題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1 , P2三等分邊AB,R1 , R2三等分邊AC.經(jīng)探究知 = SABC , 請(qǐng)證明.
問(wèn)題2:若有另一塊三角形紙板,可將其與問(wèn)題1中的拼合成四邊形ABCD,如圖2,Q1 , Q2三等分邊DC.請(qǐng)?zhí)骄? 與S四邊形ABCD之間的數(shù)量關(guān)系.
問(wèn)題3:如圖3,P1 , P2 , P3 , P4五等分邊AB,Q1 , Q2 , Q3 , Q4五等分邊DC.若S四邊形ABCD=1,求
問(wèn)題4:如圖4,P1 , P2 , P3四等分邊AB,Q1 , Q2 , Q3四等分邊DC,P1Q1 , P2Q2 , P3Q3將四邊形ABCD分成四個(gè)部分,面積分別為S1 , S2 , S3 , S4 . 請(qǐng)直接寫(xiě)出含有S1 , S2 , S3 , S4的一個(gè)等式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加強(qiáng)防汛工作,某市對(duì)一攔水壩進(jìn)行加固,如圖,加固前攔水壩的橫斷面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12 米,∠B=60°,加固后攔水壩的橫斷面為梯形ABED,tanE= ,則CE的長(zhǎng)為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)政府提出的“綠色發(fā)展低碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車(chē).經(jīng)市場(chǎng)調(diào)查得知,購(gòu)買(mǎi)3輛男式單車(chē)與4輛女式單車(chē)費(fèi)用相同,購(gòu)買(mǎi)5輛男式單車(chē)與4輛女式單車(chē)共需16000元.
(1)求男式單車(chē)和女式單車(chē)的單價(jià);
(2)該社區(qū)要求男式單比女式單車(chē)多4輛,兩種單車(chē)至少需要22輛,購(gòu)置兩種單車(chē)的費(fèi)用不超過(guò)50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)利,海監(jiān)部門(mén)對(duì)我國(guó)領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)50海里的速度向正東方航行,在A處測(cè)得燈塔P在北偏東60°方向上,繼續(xù)航行1小時(shí)到達(dá)B處,此時(shí)測(cè)得燈塔P在北偏東30°方向上.

(1)求∠APB的度數(shù);
(2)已知在燈塔P的周?chē)?5海里內(nèi)有暗礁,問(wèn)海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

同步練習(xí)冊(cè)答案