【題目】運(yùn)用圖形變化的方法研究下列問(wèn)題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是( )
A. B. C. D.
【答案】A
【解析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長(zhǎng),證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.
作直徑CG,連接OD、OE、OF、DG.
∵CG是圓的直徑,
∴∠CDG=90°,則DG==8,
又∵EF=8,
∴DG=EF,
∴,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_(kāi)____________;(直接填寫(xiě)結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點(diǎn)C(3,2),連接OC.以OC為對(duì)稱(chēng)軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過(guò)點(diǎn)A′、B,則k的值是( 。
A. 9B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)是邊上的一點(diǎn)(不與、重合),點(diǎn)在的延長(zhǎng)線上,且滿(mǎn)足,連接、,與邊交于點(diǎn).
(1)求證:;
(2)如果,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷(xiāo)量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示:
時(shí)間x(天) | 1≤x≤7 | 8≤x≤14 |
售價(jià)(元/斤) | 第1次降價(jià)后的價(jià)格 | 第2次降價(jià)后的價(jià)格 |
銷(xiāo)量(斤) | 80﹣3x | 120﹣x |
儲(chǔ)存和損耗費(fèi)用(元) | 40+3x | 3x2﹣64x+400 |
已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷(xiāo)售該水果第x(天)的利潤(rùn)為y(元),求y與x(1≤x≤14)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷(xiāo)售利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)(1)班班主任對(duì)本班學(xué)生進(jìn)行了“我最喜歡的課外活動(dòng)”的調(diào)查,并將調(diào)查結(jié)果分為書(shū)法和繪畫(huà)類(lèi)記為A;音樂(lè)類(lèi)記為B;球類(lèi)記為C;其他類(lèi)記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個(gè)學(xué)生都進(jìn)行了等級(jí)且只登記了一種自己最喜歡的課外活動(dòng).班主任根據(jù)調(diào)查情況把學(xué)生都進(jìn)行了歸類(lèi),并制作了如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
(1)七年級(jí)(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計(jì)圖中D類(lèi)所對(duì)應(yīng)扇形的圓心角為_____度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)學(xué)校將舉行書(shū)法和繪畫(huà)比賽,每班需派兩名學(xué)生參加,A類(lèi)4名學(xué)生中有兩名學(xué)生擅長(zhǎng)書(shū)法,另兩名擅長(zhǎng)繪畫(huà).班主任現(xiàn)從A類(lèi)4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長(zhǎng)書(shū)法,另一名擅長(zhǎng)繪畫(huà)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)直接寫(xiě)出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)B作BF∥CA交DA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.
(1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)
(2)證明:四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫(xiě)出這個(gè)條件.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與軸交于點(diǎn),與反比例函數(shù)的圖象的交點(diǎn)為,軸垂足為,若點(diǎn)在反比例函數(shù)圖象上,且的面積等于12,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com