【題目】如圖1,若四邊形ABCD、GFED都是正方形,顯然圖中有AG=CE,AG⊥CE.
(1)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖2的位置時(shí),AG=CE是否成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)正方形GFED繞D旋轉(zhuǎn)到B,D,G在一條直線(如圖3)上時(shí),連結(jié)CE,設(shè)CE分別交AG、AD于P、H.
①求證:AG⊥CE;
②如果,AD=2,DG=,求CE的長(zhǎng).
【答案】(1)AG=CE成立;(2)①詳見(jiàn)解析;②5
【解析】
(1)利用正方形性質(zhì)以及全等三角形的判定的很粗△AGD≌△CED(SAS)即可得出答案;
(2)①根據(jù)(1)得出∠1=∠2,再利用∠3=∠4,∠4+∠2=90°,可得出∠3+∠1=90°,進(jìn)而得出答案;
②利用等腰直角三角形的性質(zhì)可得出MD=MG= ,進(jìn)而利用勾股定理求出CE的長(zhǎng).
(1)解:AG=CE成立.
理由:∵四邊形ABCD、四邊形DEFG是正方形,
∴GD=DE,AD=DC,
∠GDE=∠ADC=90°,
∴∠GDA=90°﹣∠ADE=∠EDC,
在△AGD和△CED中,
∴△AGD≌△CED(SAS),
∴AG=CE;
(2)證明:①由(1)可知△AGD≌△CED,
∴∠1=∠2,
∵∠3=∠4,∠4+∠2=90°,
∴∠3+∠1=90°,
∴∠APH=90°,
∴AG⊥CH;
②解:過(guò)G作GM⊥AD于M.
∵BD是正方形ABCD的對(duì)角線,
∴∠ADB=∠GDM=45°,
∴∠DGM=45°,
∵DG=,
∴MD=MG=,
在Rt△AMG中,由勾股定理,得
∴CE=AG=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民的交通消費(fèi)可分為交通工具、交通工具使用燃料、交通工具維修、市內(nèi)公共交通、城市間交通五項(xiàng).該市統(tǒng)計(jì)局根據(jù)當(dāng)年各項(xiàng)的權(quán)重及各項(xiàng)價(jià)格的漲幅,計(jì)算當(dāng)年居民交通消費(fèi)價(jià)格的平均漲幅.2017年該市的有關(guān)數(shù)據(jù)如下表所示.
交通工具 | 交通工具使用燃料 | 交通工具維修 | 市內(nèi)公共交通 | 城市間交通 | |
占交通消費(fèi)的比例 | 22% | 13% | 5% | P | 26% |
相對(duì)上一年價(jià)格的漲幅 | 1.5% | m% | 2% | 0.5% | 1% |
(1)求p的值;
(2)若2017年該市的居民交通消費(fèi)相對(duì)上一年價(jià)格的平均漲幅為1.25%,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-2(k-1)x+k2 =0有兩個(gè)實(shí)數(shù)根x1.x2.
(1)求實(shí) 數(shù)k的取值范圍;
(2)若(x1+1)(x2+1)=2,試求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)P的橫坐標(biāo)為2,將點(diǎn)A繞點(diǎn)P旋轉(zhuǎn),使它的對(duì)應(yīng)點(diǎn)B恰好落在x軸上(不與A點(diǎn)重合);再將點(diǎn)B繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)C.
(1)直接寫(xiě)出點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一張矩形紙片中,,,現(xiàn)將這張紙片按下列圖示方法折疊,請(qǐng)解決下列問(wèn)題:
(1)如圖①,折痕為,點(diǎn)的對(duì)應(yīng)點(diǎn)在上,求證:四邊形是正方形;
(2)如圖②,、分別為、的中點(diǎn),把矩形紙片沿著剪開(kāi),變成兩張矩形紙片,將兩張紙片任意疊合后(如圖③),判斷重疊四邊形的形狀,并證明;
(3)在(2)中,重疊四邊形的周長(zhǎng)是否存在最大值或最小值?若存在,請(qǐng)求出最大值或最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=x2﹣mx+m+1(m為常數(shù)).若這個(gè)二次函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn)A,且A點(diǎn)在x軸的正半軸上.
(1)求m的值.
(2)四邊形AOBC是正方形,且點(diǎn)B在y軸的負(fù)半軸上,現(xiàn)將這個(gè)二次函數(shù)的圖象平移,使平移后的函數(shù)圖象恰好經(jīng)過(guò)B,C兩點(diǎn),求平移后的圖象對(duì)應(yīng)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B (0,-3),與x軸交于另一點(diǎn)C。
(1)求拋物線的解析式。
(2)在拋物線上是否存在一點(diǎn)D,使△ACD的面積與△ABC的面積相等(點(diǎn)D不與點(diǎn)B重合)?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn),那么是否存在這樣的點(diǎn)P,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形 ABCD 的邊長(zhǎng)為 8,E 是 BC 邊的中點(diǎn),點(diǎn) P 在射線 AD 上, 過(guò) P 作 PF⊥AE 于 F.
(1)請(qǐng)判斷△PFA 與△ABE 是否相似,并說(shuō)明理由;
(2)當(dāng)點(diǎn) P 在射線 AD 上運(yùn)動(dòng)時(shí),設(shè) PA=x,是否存在實(shí)數(shù) x,使以 P,F,E 為頂 點(diǎn)的三角形也與△ABE 相似?若存在,請(qǐng)求出 x 的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com