【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=PBD.延長PD交圓的切線BE于點(diǎn)E

(1)證明:直線PD是⊙O的切線.

(2)如果∠BED=60°,,求PA的長.

(3)將線段PD以直線AD為對稱軸作對稱線段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.

【答案】(1)證明見解析;(2)1;(3)證明見解析.

【解析】(1)連接OD,由AB是圓O的直徑可得∠ADB=90°,進(jìn)而求得∠ADO+∠PDA=90°,即可得出直線PD為⊙O的切線;
(2)根據(jù)BE是⊙O的切線,則∠EBA=90°,即可求得∠P=30°,再由PD為⊙O的切線,得∠PDO=90°,根據(jù)三角函數(shù)的定義求得OD,由勾股定理得OP,即可得出PA;
(3)根據(jù)題意可證得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圓O的直徑,得∠ADB=90°,設(shè)∠PBD=x°,則可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圓內(nèi)接四邊形的性質(zhì)得出x的值,可得出△BDE是等邊三角形.進(jìn)而證出四邊形DFBE為菱形.

1)如圖1,連接OD,

AB是圓O的直徑,

∴∠ADB=90°,

∴∠ADO+BDO=90°,

又∵DO=BO,

∴∠BDO=PBD,

∵∠PDA=PBD,

∴∠BDO=PDA,

∴∠ADO+PDA=90°,

PDOD,

∵點(diǎn)D在⊙O上,

∴直線PD為⊙O的切線.

(2)解:∵BE是⊙O的切線,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°.

PD為⊙O的切線,

∴∠PDO=90°,

RtPDO中,∠P=30°,,

,解得OD=1,

,

PA=PO﹣AO=2﹣1=1.

(3)證明:如圖2

依題意得:∠ADF=PDA,PAD=DAF,

∵∠PDA=PBDADF=ABF,

∴∠ADF=PDA=PBD=ABF,

AB是圓O的直徑,

∴∠ADB=90°,

設(shè)∠PBD=x°

則∠DAF=PAD=90°+x°,DBF=2x°,

∵四邊形AFBD內(nèi)接于⊙O,∴∠DAF+DBF=180°,

90°+x+2x=180°,

解得x=30°

∴∠ADF=PDA=PBD=ABF=30°.

BE、ED是⊙O的切線,

DE=BE,EBA=90°,

∴∠DBE=60°,

∴△BDE是等邊三角形.

BD=DE=BE,

又∵∠FDB=ADB﹣ADF=90°﹣30°=60°DBF=2x°=60°,

∴△BDF是等邊三角形.

BD=DF=BF,

DE=BE=DF=BF,

∴四邊形DFBE為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(-10,0),B(-6,0),點(diǎn)C在y軸的正半軸上,CBO=45°,CDAB,CDA=90°.點(diǎn)P從點(diǎn)Q(8,0)出發(fā),沿x軸向左以每秒1個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動,運(yùn)動時(shí)間為t秒.

(1)求點(diǎn)C的坐標(biāo).

(2)當(dāng)BCP=15°時(shí),求t的值.

(3)以PC為直徑作圓,當(dāng)該圓與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某劇院的觀眾席的座位為扇形,且按下列分式設(shè)置:

排數(shù)(x

1

2

3

4

座位數(shù)(y

50

53

56

59

(1)按照上表所示的規(guī)律,當(dāng)x每增加1時(shí),y如何變化?

(2)寫出座位數(shù)y與排數(shù)x之間的關(guān)系式;

(3)按照上表所示的規(guī)律,某一排可能有90個(gè)座位嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為5cm的等邊三角形,點(diǎn)P,Q分別從頂點(diǎn)AB同時(shí)出發(fā),沿線段AB,BC運(yùn)動,且它們的速度都為1cm/s.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)停止運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時(shí)間為ts).

1)當(dāng)t為何值時(shí),PBQ是直角三角形?

2)連接AQ、CP,相交于點(diǎn)M,則點(diǎn)P,Q在運(yùn)動的過程中,CMQ會變化嗎?若變化,則說明理由;若不變,請求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠1=∠2,AEOBE,BDOAD,交點(diǎn)為C,則圖中全等三角形共有( )

A. 2對 B. 3對 C. 4對 D. 5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動,第一秒它從原點(diǎn)跳動到點(diǎn)(01),第二秒它從點(diǎn)(0,1)跳到點(diǎn)(1,1),然后接著按圖中箭頭所示方向跳動[(00)→(0,1)→(1,1)→(1,0)→…],每秒跳動一個(gè)單位長度,那么30秒后跳蚤所在位置的坐標(biāo)是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣陽光體育“大課間”活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球.B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項(xiàng)目.為了了解學(xué)生對四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:

(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)請計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBCAE平分∠BAC

1)若∠B=70°,∠C=30°,求;

①∠BAE的度數(shù).

②∠DAE的度數(shù).

2)探究:如果只知道∠B=C+40°,那么能求岀∠DAE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

1)∠A和∠5是直線______和直線_____被直線_______所截而成的,∠A和∠4是直線_____和直線_____被直線_____所截而成的,∠1和∠8是直線_____和直線_____被直線___________所截而成的.

2)指出圖中所有的同位角__________,________________;指出圖中所有的內(nèi)錯(cuò)角_______________________;

查看答案和解析>>

同步練習(xí)冊答案