【題目】在某次訓(xùn)練中,甲、乙兩名射擊運動員各射擊10發(fā)子彈的成績統(tǒng)計圖如圖所示,對于本次訓(xùn)練,有如下結(jié)論:S2>S2;S2<S2;甲的射擊成績比乙穩(wěn)定;乙的射擊成績比甲穩(wěn)定,由統(tǒng)計圖可知正確的結(jié)論是(

A.①③ B.①④ C.②③ D.②④

【答案】C

【解析】

試題由圖中知,甲的成績?yōu)?,7,8,9,8,9,10,9,9,9,

乙的成績?yōu)?,9,7,8,10,7,9,10,7,10,

=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,

甲的方差S2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,

乙的方差S2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.45

S2<S2,甲的射擊成績比乙穩(wěn)定;故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市園林處為了對一段公路進行綠化,計劃購買,兩種風(fēng)景樹共900棵.兩種樹的相關(guān)信息如下表:

品種 項目

單價(元棵)

成活率

80

100

若購買種樹棵,購樹所需的總費用為元.

1)求之間的函數(shù)關(guān)系式;

2)若購樹的總費用不超過82 000元,則購種樹不少于多少棵?

3)若希望這批樹的成活率不低于,且使購樹的總費用最低,應(yīng)選購,兩種樹各多少棵?此時最低費用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時間x(小時)之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時)之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:

1)求線段CD對應(yīng)的函數(shù)表達式;

2)求E點的坐標(biāo),并解釋E點的實際意義;

3)若已知轎車比貨車晚出發(fā)2分鐘,且到達乙地后在原地等待貨車,則當(dāng)x= 小時,貨車和轎車相距30千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小馬虎做一道數(shù)學(xué)題,已知兩個多項式,試求.”其中多項式的二次項系數(shù)印刷不清楚.

1)小馬虎看答案以后知道,請你替小馬虎求出系數(shù);

2)在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結(jié)果.小馬虎在求解時,誤把看成,結(jié)果求出的答案為.請你替小馬虎求出的正確答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB90°,OA36cm,OB12cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,邊上一點,將沿翻折,點落在點處,當(dāng)為直角三角形時,________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市電器銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售量

銷售收入

A型號

B型號

第一周

3

5

1800

第二周

4

10

3100

(1)求A、B兩種型號的電風(fēng)扇的銷售價.

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇30臺,求A種型號的電風(fēng)扇最多能采購多少臺?

(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能請給出采購方案.若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,ADAC,ADAC,EAB的中點,FAC延長線上一點.

1)若EDEF,求證:EDEF;

2)在(1)的條件下,若DC的延長線與FB交于點P,試判定四邊形ACPE是否為平行四邊形?并證明你的結(jié)論(請先補全圖形,再解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

(2)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.

①求證:BD⊥CF;

②當(dāng)AB=4,AD=時,求線段BG的長.

查看答案和解析>>

同步練習(xí)冊答案