【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)△ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

【答案】證明見解析.

【解析】試題分析:(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,對角相等,即可證得∠A=∠CAB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF

2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF,然后根據(jù)對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.

試題解析:證明:(1四邊形ABCD是平行四邊形,

∴∠A=∠CAB=CD,

△ABE△CDF中,

,

∴△ABE≌△CDFSAS);

2四邊形ABCD是平行四邊形,

∴AD∥BC,AD=BC

∵AE=CF,

∴AD-AE=BC-CF,

DE=BF,

四邊形BFDE是平行四邊形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對于兩個已知圖形G1、G2,在G1任取一點P,在G2任取一點Q,當線段PQ的長度最小時,我們稱這個最小長度為G1、G2密距”.例如,如上圖,,,,則點A射線OC之間的密距B射線OC之間的密距3,如果直線y=x-1和雙曲線之間的密距,則k值為(

A. k=4 B. k=-4 C. k=6 D. k=-6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,將紙片折疊,點A、D分別落在A′、D′處,且A′D′經(jīng)過B,EF為折痕,當D′F⊥CD時, 的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學為備戰(zhàn)省運會,在校運動隊的學生中進行了全能選手的選拔,并將參加選拔學生的綜合成績分成四組,繪成了如下尚不完整的統(tǒng)計圖表.

組別

成績

組中值

頻數(shù)

第一組

90≤x<100

95

4

第二組

80≤x<90

85

m

第三組

70≤x<80

75

n

第四組

60≤x<70

65

21

根據(jù)圖表信息,回答下列問題:
(1)參加活動選拔的學生共有人;表中m= , n=;
(2)若將各組的組中值視為該組的平均值,請你估算參加選拔學生的平均成績;
(3)將第一組中的4名學生記為A、B、C、D,由于這4名學生的體育綜合水平相差不大,現(xiàn)決定隨機挑選其中兩名學生代表學校參賽,試通過畫樹形圖或列表的方法求恰好選中A和B的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有20個球,其中紅球6個,白球和黑球若干個,每個球除顏色外完全相同.

(1)小明通過大量重復試驗(每次將球攪勻后,任意摸出一個球,記下顏色后放回)發(fā)現(xiàn),摸出的黑球的頻率在0.4附近擺動,請你估計袋中黑球的個數(shù).

(2)若小明摸出的第一個球是白球,不放回,從袋中余下的球中再任意摸出一個球,摸出白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,不正確的是(

A. 一個數(shù)與它的倒數(shù)的積是1

B. 一個數(shù)的絕對值與它的相反數(shù)的商是

C. 兩個數(shù)的商為,這兩個數(shù)互為相反數(shù)

D. 兩個數(shù)的積為1,這兩個數(shù)互為倒數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長DA和QP交于點O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點O按逆時針方向開始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).
發(fā)現(xiàn):

(1)當α=0°,即初始位置時,點P直線AB上.(填“在”或“不在”)求當α是多少時,OQ經(jīng)過點B.
(2)在OQ旋轉(zhuǎn)過程中,簡要說明α是多少時,點P,A間的距離最?并指出這個最小值;
(3)如圖2,當點P恰好落在BC邊上時,求a及S陰影
拓展:
如圖3,當線段OQ與CB邊交于點M,與BA邊交于點N時,設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長,并求x的取值范圍.
探究:當半圓K與矩形ABCD的邊相切時,求sinα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有4個質(zhì)地、大小均相同的小球,這些小球分別標有數(shù)字3,4,5,x.甲、乙兩人每次同時從袋中各隨機摸出1個球,并計算摸出的這2個小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進行重復試驗.實驗數(shù)據(jù)如下表:

摸球總次數(shù)

10

20

30

60

90

120

180

240

330

450

“和為8”出現(xiàn)的頻數(shù)

2

10

13

24

30

37

58

82

110

150

“和為8”出現(xiàn)的頻率

0.20

0.50

0.43

0.40

0.33

0.31

0.32

0.34

0.33

0.33

解答下列問題:
(1)如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近.估計出現(xiàn)“和為8”的概率是;
(2)當x=7時,請用列表法或樹狀圖法計算“和為8”的概率;并判斷x=7是否可能.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點OAC邊上的一個動點,過點O作直線MNBC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.

(1)求證:EO=FO;

(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案