【題目】如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
【答案】(1)證明見解析;(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形.理由見解析.
【解析】試題分析:(1)根據(jù)MN∥BC,CE平分∠ACB,CF平分∠ACD及等角對(duì)等邊即可證得OE=OF;
(2)根據(jù)矩形的性質(zhì)可知:對(duì)角線且互相平分,即AO=CO,OE=OF,故當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形.
(1)證明:∵M(jìn)N∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,
∴OE=OC,OC=OF,
∴OE=OF.
(2)解:當(dāng)O運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形,
∵AO=CO,OE=OF,
∴四邊形AECF是平行四邊形,
∵∠ECA+∠ACF=∠BCD,
∴∠ECF=90°,
∴四邊形AECF是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B的坐標(biāo)分別為(4,0),(2,0),現(xiàn)以B為圓心,1為半徑在第一象限內(nèi)畫半圓,M,N是此半圓的三等分點(diǎn),點(diǎn)P在 上,射線AP交y軸于點(diǎn)Q,當(dāng)點(diǎn)P從點(diǎn)M運(yùn)動(dòng)到點(diǎn)N時(shí),點(diǎn)Q相應(yīng)移動(dòng)的路徑長(zhǎng)為( )
A.
B.
C.2﹣
D.2 ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8 …,頂點(diǎn)依次為A1,A2,A3,A4,A5,…,則頂點(diǎn)A55的坐標(biāo)是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】講完“有理數(shù)的除法”后,老師在課堂上出了一道計(jì)算題:15÷(-8).不一會(huì)兒,不少同學(xué)算出了答案,老師把班上同學(xué)的解題過程歸類寫到黑板上.
方法一:原式=×(-)=-=-1;
方法二:原式=(15+)×(-)=15×(-)+×(-)=-=-1;
方法三:原式=(16-)÷(-8)=16÷(-8)-÷(-8)=-2+=-1.
對(duì)這三種方法,大家議論紛紛,你認(rèn)為哪種方法最好?請(qǐng)說出理由,并說說本題對(duì)你有何啟發(fā).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD中,P是CD的中點(diǎn),連接AP并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F,作△CPF的外接圓⊙O,連接BP并延長(zhǎng)交⊙O于點(diǎn)E,連接EF,則EF的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,從全國(guó)旅游景區(qū)質(zhì)量等級(jí)評(píng)審會(huì)上傳來喜訊,我市“風(fēng)岡茶海之心”、“赤水佛光巖”、“仁懷中國(guó)酒文化城”三個(gè)景區(qū)加入國(guó)家“4A”級(jí)景區(qū).至此,全市“4A”級(jí)景區(qū)已達(dá)13個(gè).某旅游公司為了了解我市“4A”級(jí)景區(qū)的知名度情況,特對(duì)部分市民進(jìn)行現(xiàn)場(chǎng)采訪,根據(jù)市民對(duì)13個(gè)景區(qū)名字的回答情況,按答數(shù)多少分為熟悉(A),基本了解(B)、略有知曉(C)、知之甚少(D)四類進(jìn)行統(tǒng)計(jì),繪制了一下兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息解答以下各題:
(1)本次調(diào)查活動(dòng)的樣本容量是;
(2)調(diào)查中屬于“基本了解”的市民有人;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)“略有知曉”類占扇形統(tǒng)計(jì)圖的圓心角是多少度?“知之甚少”類市民占被調(diào)查人數(shù)的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11分)已知△ABC,分別以AB、BC、CA為邊向形外作等邊三角形ABD、等邊三角形BCE、等邊三角形ACF.
(1)如圖1,當(dāng)△ABC是等邊三角形時(shí),請(qǐng)你寫出滿足圖中條件,四個(gè)成立的結(jié)論;
(2)如圖2,當(dāng)△ABC中只有∠ACB=60°時(shí),請(qǐng)你證明S△ABC與S△ABD的和等于S△BCE與S△ACF的和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com