【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是
【答案】60°
【解析】解:∵△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形, ∴∠AOC=∠BOD=40°,AO=CO,
∵∠AOD=90°,
∴∠BOC=90°﹣40°×2=10°,
∠ACO=∠A= (180°﹣∠AOC)= (180°﹣40°)=70°,
由三角形的外角性質(zhì)得,∠B=∠ACO﹣∠BOC=70°﹣10°=60°.
所以答案是:60°.
【考點精析】通過靈活運用旋轉(zhuǎn)的性質(zhì),掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進甲乙兩種商品,甲的進貨單價比乙的進貨單價高20元,已知20個甲商品的進貨總價與25個乙商品的進貨總價相同.
(1)求甲、乙每個商品的進貨單價;
(2)若甲、乙兩種商品共進貨100件,要求兩種商品的進貨總價不高于9000元,同時甲商品按進價提高10%后的價格銷售,乙商品按進價提高25%后的價格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲乙兩種商品全部售完,哪種方案利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張矩形紙片ABCD沿EF折疊,使頂點C,D分別落在點C′,D′處,C′E交AF于點G,若∠CEF=70°,則∠GFD′=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A、D分別在x軸和y軸上,CD∥x軸,BC∥y軸.點P從D點出發(fā),以1cm/s的速度,沿五邊形DOABC的邊勻速運動一周.記順次連接P、O、D三點所圍成圖形的面積為Scm2 , 點P運動的時間為ts.已知S與t之間的函數(shù)關(guān)系如圖2中折線段OEFGHI所示.
(1)求A、B兩點的坐標;
(2)若直線PD將五邊形OABCD分成面積相等的兩部分,求直線PD的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時,PC=30m,點C與點A在同一水平線上,A、B、P、C在同一平面內(nèi).
(1)求居民樓AB的高度;
(2)求C、A之間的距離.
(精確到0.1m,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=2的拋物線經(jīng)過A(﹣1,0),C(0,5)兩點,與x軸另一交點為B.已知M(0,1),E(a,0),F(xiàn)(a+1,0),點P是第一象限內(nèi)的拋物線上的動點.
(1)求此拋物線的解析式;
(2)當a=1時,求四邊形MEFP的面積的最大值,并求此時點P的坐標;
(3)若△PCM是以點P為頂點的等腰三角形,求a為何值時,四邊形PMEF周長最?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知半徑為2的⊙O與直線l相切于點A,點P是直徑AB左側(cè)半圓上的動點,過點P作直線l的垂線,垂足為C,PC與⊙O交于點D,連接PA、PB,設(shè)PC的長為x(2<x<4).
(1)當x= 時,求弦PA、PB的長度;
(2)當x為何值時,PDCD的值最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四張撲克牌的點數(shù)分別是2,3,4,8,將它們洗勻后背面朝上放在桌上.
(1)從中隨機抽取一張牌,求這張牌的點數(shù)是偶數(shù)的概率;
(2)從中隨機抽取一張牌,接著再抽取一張,求這兩張牌的點數(shù)都是偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c、d都是正實數(shù),且 < ,給出下列四個不等式: ① < ;② < ;③ ;④ <
其中不等式正確的是()
A.①③
B.①④
C.②④
D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com