【題目】一個(gè)不透明的袋子中裝有3個(gè)紅球和1個(gè)白球,這些球除顏色外都相同.

(1)從中隨機(jī)摸出1個(gè)球,記錄顏色后放回,攪勻,再摸出1個(gè)球.摸出的兩個(gè)球中,1個(gè)為紅球,1個(gè)為白球的概率為 ;

(2)從中隨機(jī)摸出1個(gè)球,記錄顏色后不放回,再摸出1個(gè)球.求摸出的兩個(gè)球中,1個(gè)為紅球,1個(gè)為白球的概率.

【答案】(1);(2)

【解析】

試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與摸出的兩個(gè)球中,1個(gè)為紅球,1個(gè)為白球的情況,再利用概率公式即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與摸出的兩個(gè)球中,1個(gè)為紅球,1個(gè)為白球的情況,再利用概率公式即可求得答案.

解:(1)畫樹狀圖得:

共有16種等可能的結(jié)果,摸出的兩個(gè)球中,1個(gè)為紅球,1個(gè)為白球的有6種情況,

摸出的兩個(gè)球中,1個(gè)為紅球,1個(gè)為白球的概率為:=;

故答案為:

(2)編畫樹狀圖得:

共有12種可能出現(xiàn)的結(jié)果,它們出現(xiàn)的可能性相同,摸出“1個(gè)是紅球,1個(gè)白球”(記為事件B)的結(jié)果有6種,

摸出的兩個(gè)球中,1個(gè)為紅球,1個(gè)為白球的概率為:=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式

-49a2bc-14ab2c+7ab

(2a+b)(2a-3b)-8a(2a+b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P的坐標(biāo)是(-3,4),則點(diǎn)P在(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個(gè)單位得到△A′B′C′.

(1)補(bǔ)全△A′B′C′,利用網(wǎng)格點(diǎn)和直尺畫圖;

(2)圖中AC與A1C1的關(guān)系是:

(3)畫出AB邊上的高線CD;

(4)畫出△ABC中AB邊上的中線CE;

(5)△BCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情況是( )
A.該方程有兩個(gè)不相等的實(shí)數(shù)根
B.該方程有兩個(gè)相等的實(shí)數(shù)根
C.該方程有實(shí)數(shù)根
D.該方程沒有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法: ①兩條直線被第三條直線所截,同位角相等;
②平面內(nèi)的一條直線和兩條平行線中的一條相交,則它與另一條也相交;
③相等的兩個(gè)角是對頂角;
④從直線外一點(diǎn)到這條直線的垂線段,叫做這點(diǎn)到直線的距離.
其中正確的有(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在矩形ABCD中,AB=3,BC=4,連接BD.現(xiàn)將一個(gè)足夠大的直角三角板的直角頂點(diǎn)P放在BD所在的直線上,一條直角邊過點(diǎn)C,另一條直角邊與AB所在的直線交于點(diǎn)G.

(1)是否存在這樣的點(diǎn)P,使點(diǎn)P、C、G為頂點(diǎn)的三角形與GCB全等?若存在,畫出圖形,并直接在圖形下方寫出BG的長.(如果你有多種情況,請用①、②、③、…表示,每種情況用一個(gè)圖形單獨(dú)表示,如果圖形不夠用,請自己畫圖)

(2)如圖(2),當(dāng)點(diǎn)P在BD的延長線上時(shí),以P為圓心、PB為半徑作圓分別交BA、BC延長線于點(diǎn)E、F,連EF,分別過點(diǎn)G、C作GMEF,CNEF,M、N為垂足.試探究PM與FN的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三角形的三邊長分別為a,b,c,則a,b,c的值不可能是( 。

A. 3,4,5 B. 5,7,7 C. 10,6,4.5 D. 4,5,9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若abm和﹣anb3是同類項(xiàng),則n﹣m=

查看答案和解析>>

同步練習(xí)冊答案