【題目】某蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國各地,近年來它的蔬菜產(chǎn)值不斷增加,2014年蔬菜的產(chǎn)值是640萬元,2016年產(chǎn)值達到1000萬元.
(1)求2015年、2016年蔬菜產(chǎn)值的平均增長率是多少?
(2)若2017年蔬菜產(chǎn)值繼續(xù)穩(wěn)定增長(即年增長率與前兩年的年增長率相同),那么請你估計2017年該公司的蔬菜產(chǎn)值達到多少萬元?

【答案】
(1)解:設2015年、2016年蔬菜產(chǎn)值的年平均增長率為
則有 ,
解得: (舍去), ,
∴2015、2016年蔬菜產(chǎn)值的年平均增長率為25%.
(2)解:1000×(1+25%)=1250(萬元)
∴2017年該公司的蔬菜產(chǎn)值將達到1250萬元
【解析】(1)根據(jù)題意將題中的已知條件轉(zhuǎn)化為等量關(guān)系是:2014年的產(chǎn)值(1+增長率)2=2016年的產(chǎn)值,建立方程求解即可。
(2)2017年蔬菜產(chǎn)值=2016年的產(chǎn)值(1+增長率),計算即可。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點F在線段AB上,點E、G在線段CD上,ABCD

1)若BC平分∠ABD,∠D100°,求∠ABC的度數(shù).

解:∵ABCD(已知),

∴∠ABD+D180°,(   

∵∠D100°,(已知)

∴∠ABD   °,

BC平分∠ABD,(已知)

∴∠ABCABD40°.(角平分線的定義)

2)若∠1=∠2,求證:AEFG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 圓柱形容器中,高為底面周長為在容器內(nèi)壁離容器底部的點處有一蚊子,此時一只壁虎正好在容器外壁,離容器上沿與蚊子相對的點處,則壁虎捕捉蚊子的最短距離為___(容器厚度忽略不計. )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的解題過程(在下面的橫線上,填寫相應的結(jié)論或推理的依據(jù)):

已知:ABC,∠A、∠B、∠C之和為多少?為什么?

解:∠A+B+C=180°

理由:過CCD//AB,并延長BCE

CD//________(已作)

∴∠________=ACD(兩直線平行,內(nèi)錯角相等)

且∠B=___________________________

而∠DCE+ACD+ACB=_________°

∴∠________+B+ACB=180°__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為1,點與原點重合,軸正半軸上,軸負半軸上,將正方形繞著點逆時針旋轉(zhuǎn),相交于點,則坐標為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四月江南黃鳥肥,櫻桃滿市粲朝輝,暮春時節(jié),重慶市櫻桃(俗稱思桃兒)早已進入采摘期.某現(xiàn)代農(nóng)業(yè)園區(qū)推行免入園費自助采摘活動.該園區(qū)種植了普通櫻桃和烏皮櫻桃兩個品種,其中烏皮櫻桃甜味香,肉質(zhì)細嫩,售價比普通櫻桃每斤高出20元.

1)今年430日,普通櫻桃銷量為200斤,烏皮櫻桃銷量為400斤,若當天總銷售額不低于26000元,則每斤普通櫻桃至少賣多少元?

2)為降低高溫天氣帶來的經(jīng)濟損失,果園負責人決定在五一節(jié)推出優(yōu)惠政策,若兩種櫻桃在(1)的條件下均以最低價格銷售,51日,普通櫻桃售價降低,銷量比430日增加,烏皮櫻桃售價不變,銷量比430日增加了,且51日總銷售額比430日增加了.求的值.().

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩直線L1:y=k1x+b1 , L2:y=k2x+b2 , 若L1⊥L2 , 則有k1k2=﹣1.
(1)應用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y= x+3垂直,求解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,點E是CD的中點,DOE的周長為16,BD=12,則ABCD的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

對于任意一個三位數(shù)正整數(shù)n,如果n的各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為陌生數(shù),將一個陌生數(shù)的三個數(shù)位上的數(shù)字交換順序,可以得到5個不同的新陌生數(shù),把這6個陌生數(shù)的和與111的商記為M(n).例如n=123,可以得到132.213.231.312.3215個新的陌生數(shù),這6陌生數(shù)的和為123132213231312321=1332,因為,所以M(123)=12.

(1)計算:M(125)M(361)的值;

(2)st都是陌生數(shù),其中42分別是s的十位和個位上的數(shù)字,25分別是t的百位和個位上的數(shù)字,且t的十位上的數(shù)字比s的百位上的數(shù)字小2;規(guī)定:.,則k的值是多少?

查看答案和解析>>

同步練習冊答案