【題目】如圖,已知菱形ABCD中,對角線AC、BD相交于點(diǎn)O,過點(diǎn)C作CE∥BD,過點(diǎn)D作DE∥AC,CE與DE相交于點(diǎn)E.

(1)求證:四邊形CODE是矩形;
(2)若AB=5,AC=6,求四邊形CODE的周長.

【答案】
(1)證明:如圖,∵四邊形ABCD為菱形,

∴∠COD=90°;而CE∥BD,DE∥AC,

∴∠OCE=∠ODE=90°,

∴四邊形CODE是矩形


(2)解:∵四邊形ABCD為菱形,

∴AO=OC= AC=3,OD=OB,∠AOB=90°,

由勾股定理得:

BO2=AB2﹣AO2,而AB=5,

∴DO=BO=4,

∴四邊形CODE的周長=2(3+4)=14


【解析】(1)如圖,首先證明∠COD=90°;然后證明∠OCE=∠ODE=90°,即可解決問題.(2)如圖,首先證明CO=AO=3,∠AOB=90°;運(yùn)用勾股定理求出BO,即可解決問題.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的性質(zhì)和矩形的判定方法的相關(guān)知識(shí)可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC、BD是它的對角線,∠ABC=∠ADC=90°,∠BCD是銳角.

(1)寫出這個(gè)四邊形的一條性質(zhì)并證明你的結(jié)論.
(2)若BD=BC,證明:
(3)①若AB=BC=4,AD+DC=6,求 的值.
②若BD=CD,AB=6,BC=8,求sin∠BCD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著裕安中學(xué)的規(guī)模逐漸擴(kuò)大,學(xué)生人數(shù)越來越多,學(xué)校打算購買校車20輛,現(xiàn)有AB兩種型號(hào)校車,如果購買A型號(hào)校車6輛,B型號(hào)14輛,需要資金580萬元;如果購買A型號(hào)校車12輛,B型號(hào)校車8輛,需要資金760萬元.已知每種型號(hào)校車的座位數(shù)如表所示:

A型號(hào)

B型號(hào)

座位數(shù)(個(gè)/輛)

60

30

經(jīng)預(yù)算,學(xué)校準(zhǔn)備購買設(shè)備的資金不高于500萬元.(每種型號(hào)至少購買1輛)

(1)每輛A型校車和B型校車各多少萬元?

(2)請問學(xué)校有幾種購買方案?且哪種方案的座位數(shù)最多,是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校組織八年級(jí)1000名學(xué)生參加漢字聽寫大賽,為了解學(xué)生整體聽寫能力,從中抽取部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì)分析,請根據(jù)尚未完成的下列圖表,解答問題:

組別

分?jǐn)?shù)段

頻數(shù)

頻率

50.5~60.5

16

0.08

60.5~70.5

30

0.15

70.5~80.5

50

0.25

80.5~90.5

m

0.40

90.5~100.5

n

(1)本次抽樣調(diào)查的樣本是__________,樣本容量為__________,表中m=__________,n=__________;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若抽取的樣本具有較好的代表性,且成績超過80分為優(yōu)秀,根據(jù)樣本估計(jì)該校八年級(jí)學(xué)生中漢字聽寫能力優(yōu)秀的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班組織去方特參加秋季社會(huì)實(shí)踐活動(dòng),其中第一小組有x人,第二小組的人數(shù)比第一小組人數(shù)的30人,如果從第二小組調(diào)出10人到第一小組,那么:

1)兩個(gè)小組共有多少人?

2)調(diào)動(dòng)后,第一小組的人數(shù)比第二小組多多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.

(1)求OA、OB的長.
(2)若點(diǎn)E為x軸正半軸上的點(diǎn),且SAOE= ,求經(jīng)過D、E兩點(diǎn)的直線解析式及經(jīng)過點(diǎn)D的反比例函數(shù)的解析式,并判斷△AOE與△AOD是否相似.
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E分別是AB,C的中點(diǎn),則SADE:SABC=(

A.1:2
B.1:3
C.1:4
D.1:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的對稱軸是直線x=1,若點(diǎn)P(4,0)在該拋物線上,則一元二次方程ax2+bx+c=0的兩根為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,把矩形紙片OABC放入直角坐標(biāo)系xOy中,使OA、OC分別落在x、y軸的正半軸上,連接AC,且AC=4,

(1)求AC所在直線的解析式;

(2)將紙片OABC折疊,使點(diǎn)A與點(diǎn)C重合(折痕為EF),求折疊后紙片重疊部分的面積.

(3)求EF所在的直線的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案