【題目】如圖,△ABC中,∠A=60°,P為AB上一點, Q為BC延長線上一點,且PA=CQ,連PQ交AC邊于D, PD=DQ,證明:△ABC為等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點D為AB邊上的一點,
(1)試說明:∠EAC=∠B ;
(2)若AD=15,BD=36,求DE的長.
(3)若點D在A、B之間移動,當(dāng)點D為 時,AC與DE互相平分.
(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(2,1),B(﹣1,3),C(﹣3,2).
(1)作出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)點A1的坐標(biāo) ,點B1的坐標(biāo) ;
(3)點P(a,a﹣2)與點Q關(guān)于x軸對稱,若PQ=8,則點P的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(﹣6,5)關(guān)于原點的對稱點的坐標(biāo)是( )
A.(6,5)B.(﹣6,5)C.(6,﹣5)D.(﹣6,﹣5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com