【題目】某地地震牽動著全國人民的心,某單位開展了一方有難,八方支援賑災(zāi)捐款活動.第一天收到捐款元,第三天收到捐款元.

如果第二天、第三天收到捐款的增長率相同,求捐款增長率?

按照中收到捐款的增長率不變,該單位三天一共能收到多少捐款?

【答案】(1)10%;(2) 該單位三天一共能收到元捐款.

【解析】

(1)解答此題利用的數(shù)量關(guān)系是:第一天收到捐款錢數(shù)×(1+每次增長的百分率)=第三天收到捐款錢數(shù),設(shè)出未知數(shù),列方程解答即可;

(2)第一天收到捐款錢數(shù)×(1+每次增長的百分率)=第二天收到捐款錢數(shù),依次列式子解答即可.

(1)設(shè)捐款增長率為,根據(jù)題意列方程得,

,

解得:,(不合題意,舍去),

答:捐款增長率為

第二天收到捐款為:(元).

該單位三天一共能收到的捐款為:(元).

答:該單位三天一共能收到元捐款.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,.

(1)的度數(shù);

(2)求四邊形的面積= . (第二問直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖7,已知平行四邊形ABCD的周長是32cm,AB︰BC=5︰3,AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.

(1)求∠C的度數(shù);

(2)已知DF的長是關(guān)于的方程--6=0的一個根,求該方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】環(huán)保局對某企業(yè)排污情況進(jìn)行檢測,結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過最高允許的1.0 mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過程中,所排污水中硫化物的濃度y(mg/L)與時間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,其中第3天時硫化物的濃度降為4 mg/L.從第3天起所排污水中硫化物的濃度y與時間x滿足下面表格中的關(guān)系:

時間x(天)

3

4

5

6

8

……

硫化物的濃y(mg/L)

4

3

2.4

2

1.5

(1)求整改過程中當(dāng)0≤x<3時,硫化物的濃度y與時間x的函數(shù)表達(dá)式;

(2)求整改過程中當(dāng)x≥3時,硫化物的濃度y與時間x的函數(shù)表達(dá)式;

(3)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過最高允許的1.0 mg/L?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)加工一臺大型機(jī)械設(shè)備潤滑用油千克,用油的重復(fù)利用率為,按此計(jì)算,加工一臺大型機(jī)械設(shè)備的實(shí)際耗油量為千克.通過技術(shù)革新后,不僅降低了潤滑用油量,同時也提高了用油的重復(fù)利用率,并且發(fā)現(xiàn)潤滑用油量每減少千克,用油量的重復(fù)利用率增加,這樣加工一臺大型機(jī)械設(shè)備的實(shí)際耗油量下降到千克,問技術(shù)革新后,加工一臺大型機(jī)械設(shè)備潤滑用油量是多少千克?用油的重復(fù)利用率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地地震牽動著全國人民的心,某單位開展了一方有難,八方支援賑災(zāi)捐款活動.第一天收到捐款元,第三天收到捐款元.

如果第二天、第三天收到捐款的增長率相同,求捐款增長率?

按照中收到捐款的增長率不變,該單位三天一共能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B,EC,F在同一條直線上,AB=DFAC=DE,BE=FC

1)求證:ABDF;

2)當(dāng)∠A=75°,∠DEF=38°時,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,AC=3,AB=5.點(diǎn)P從點(diǎn)A出發(fā),以每秒5個單位

長度的速度沿AC方向運(yùn)動,過點(diǎn)P作PQAB于點(diǎn)Q,當(dāng)點(diǎn)Q和點(diǎn)B重合時,點(diǎn)P停止運(yùn)動,以AP和AQ為邊作APHQ.設(shè)點(diǎn)P的運(yùn)動時間為t秒(t>0)

(1)線段PQ的長為   .(用含t的代數(shù)式表示)

(2)當(dāng)點(diǎn)H落在邊BC上時,求t的值.

(3)當(dāng)APHQ與ABC的重疊部分圖形為四邊形時,設(shè)四邊形的面積為S,求S與t之間的函數(shù)關(guān)系式.

(4)過點(diǎn)C作直線CDAB于點(diǎn)D,當(dāng)直線CD將APHQ分成兩部分圖形的面積比為1:7時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,∠A36°,∠C72°,∠ABC的平分線交ACD,則圖中共有等腰三角形(  )

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案