.如圖,在Rt△ABC中,∠C=90°,AC=BC=4cm,點D為AC邊上一點,且AD=3cm,動點E從點A出發(fā),以1cm/s的速度沿線段AB向終點B運動,運動時間為x s.作∠DEF=45°,與邊BC相交于點F.設(shè)BF長為ycm.
(1)當(dāng)x= s時,DE⊥AB;
(2)求在點E運動過程中,y與x之間的函數(shù)關(guān)系式及點F運動路線的長;
(3)當(dāng)△BEF為等腰三角形時,求x的值.
解:(1) 2分
(2)∵在△ABC中,∠C=90°,AC=BC=4.
∴∠A=∠B=45°,AB=4,∴∠ADE+∠AED=135°;
又∵∠DEF=45°,∴∠BEF+∠AED=135°,∴∠ADE=∠BEF;
∴△ADE∽△BEF 4分
∴=,
(3)這里有三種情況:
①如圖,若EF=BF,則∠B=∠BEF;
又∵△ADE∽△BEF,∴∠A=∠ADE=45°
∴∠AED=90°,∴AE=DE=,
∵動點E的速度為1cm/s ,∴此時x=s;
②如圖,若EF=BE,則∠B=∠EFB
又∵△ADE∽△BEF,∴∠A=∠AED=45°
∴∠ADE=90°,∴AE=3,
∵動點E的速度為1cm/s
∴此時x=3s;
③如圖,若BF=BE,則∠FEB=∠EFB;
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標系xOy中,拋物線交y軸于點C,對稱軸與x軸交于點D, 設(shè)點P(x,y)是該拋物線在x軸上方的一個動點(與點C不重合),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,A、B兩點的坐標分別是(8,0)、(0,6),點P由點B出發(fā)沿BA方向向點A作勻速直線運動,速度為每秒3個單位長度,點Q由A出發(fā)沿AO(O為坐標原點)方向向點O作勻速直線運動,速度為每秒2個單位長度,連接PQ,若設(shè)運動時間為t(0<t<)秒.解答如下問題:
(1)當(dāng)t為何值時,PQ∥BO?
(2)設(shè)△AQP的面積為S,
①求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②若我們規(guī)定:點P、Q的坐標分別為(x1,y1),(x2,y2),則新坐標(x2﹣x1,y2﹣y1)稱為“向量PQ”的坐標.當(dāng)S取最大值時,求“向量PQ”的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長為4的正方形ABCD中,動點E以每秒1個單位長度的速度從點A開始沿邊AB向點B運動,動點F以每秒2個單位長度的速度從點B開始沿折線BC﹣CD向點D運動,動點E比動點F先出發(fā)1秒,其中一個動點到達終點時,另一個動點也隨之停止運動,設(shè)點F的運動時間為t秒.
(1)點F在邊BC上.
①如圖1,連接DE,AF,若DE⊥AF,求t的值;
②如圖2,連結(jié)EF,DF,當(dāng)t為何值時,△EBF與△DCF相似?
(2)如圖3,若點G是邊AD的中點,BG,EF相交于點O,試探究:是否存在在某一時刻t,使得?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標系xOy中,A(2,0),B(4,0),動點C在直線上,若以A、B、C三點為頂點的三角形是等腰三角形,則點C的個數(shù)是【 】
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△ABC中,∠ACB=90°,AC=BC=4cm,CD=1cm,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,至A點結(jié)束,設(shè)E點的運動時間為t秒,連接DE,當(dāng)△BDE是直角三角形時,t的值為 秒。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標系中,點A的坐標為(8,0),點 B(t,b)在直線y=b上運動,點D、E、F分別為OB、OA、AB的中點,其中b是大于零的常數(shù)。設(shè)直線y=b與y軸交于點C,問:四邊形DEFB能不能是矩形?若能,求出t的值;若不能,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將△ABC繞著點C順時針旋轉(zhuǎn)一定角度后得到△A′B′C′,若∠A=40°.∠B′=110°,∠BCA′=80°,則旋轉(zhuǎn)角的度數(shù)是【 】
A.110° B.80° C.50° D.30°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com