【題目】已知:如圖A是⊙O上一點(diǎn),半徑OC的延長線與過點(diǎn)A的直線交于B點(diǎn),OC=BC,∠B=30°.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.
【答案】(1)見解析; (2)
【解析】
(1)求證:AB是⊙O的切線,可以轉(zhuǎn)化為證∠OAB=90°的問題來解決.
(2)作AE⊥CD于點(diǎn)E,CD=DE+CE,因而就可以轉(zhuǎn)化為求DE,CE的問題,根據(jù)勾股定理就可以得到.
(1)證明:如圖,連接OA;
∵OC=BC,OA=OC,
∴OA=OB.
∴∠OAB=90°,即OA⊥AB,
∴AB是⊙O的切線;
(2)解:作AE⊥CD于點(diǎn)E,
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=;
∵∠D=30°,
∴AD=2,
∴DE=AE=,
∴CD=DE+CE=+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CE是⊙O切線,C是切點(diǎn),EA交弦BC于點(diǎn)D、交⊙O于點(diǎn)F,連接CF:
(1)如圖1,求證:∠ECB=∠F+90°;
(2)如圖2,連接CD,延長BA交CE于點(diǎn)H,當(dāng)OD⊥BC、HA=HE時,求證:AB=CE;
(3)如圖3,在(2)的條件K在EF上,EH=FK,S△ADO=,求WE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(﹣1,0),點(diǎn)B(0,﹣2),AD與y軸交于點(diǎn)E,且E為AD的中點(diǎn),雙曲線y=經(jīng)過C,D兩點(diǎn)且D(a,4)、C(2,b).
(1)求a、b、k的值;
(2)如圖2,線段CD能通過旋轉(zhuǎn)一定角度后點(diǎn)C、D的對應(yīng)點(diǎn)C′、D′還能落在y=的圖象上嗎?如果能,寫出你是如何旋轉(zhuǎn)的,如果不能,請說明理由;
(3)如圖3,點(diǎn)P在雙曲線y=上,點(diǎn)Q在y軸上,若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B=30°,P為AB中點(diǎn),線段MV繞點(diǎn)P旋轉(zhuǎn),且M為射線AC上(不與點(diǎn)d重合)的任意一點(diǎn),且N為射線BD上(不與點(diǎn)B重合)的一點(diǎn),設(shè)∠BPN=α.
(1)求證:△APM≌△BPN;
(2)當(dāng)MN=2BN時,求α的度數(shù);
(3)若AB=4,60°≤α≤90°,直接寫出△BPN的外心運(yùn)動路線的長度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD交于點(diǎn)O,點(diǎn)E在邊CB的延長線上,且∠EAC=90°,AE2=EBEC.
(1)求證:四邊形ABCD是矩形;
(2)延長DB、AE交于點(diǎn)F,若AF=AC,求證:AE=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以每秒1cm的速度移動,同時,點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以每秒2cm的速度移動,如果P、Q兩點(diǎn)在分別到達(dá)B、C兩點(diǎn)后就停止移動,回答下列問題:
(1)當(dāng)運(yùn)動開始后1秒時,求△DPQ的面積;
(2)當(dāng)運(yùn)動開始后秒時,試判斷△DPQ的形狀;
(3)在運(yùn)動過程中,存在這樣的時刻,使△DPQ以PD為底的等腰三角形,求出運(yùn)動時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.請?jiān)谙聢D中分別畫出符合要求的圖形,所畫圖形各頂點(diǎn)必須在方格紙的格點(diǎn)上.
(1)在圖(a)中畫一個等腰三角形,使它的底邊長是4,且面積是16;
(2)在圖(b)中畫一個等腰直角三角形,使它的面積是10;
(3)在圖(c)中畫一個四邊形,使它既是軸對稱又是中心對稱圖形,且面積是29.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是 = =;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.
①求證:△ADB≌△AEC;
②請直接寫出線段AD,BD,CD之間的等量關(guān)系式;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點(diǎn)D,E是BD的中點(diǎn),聯(lián)結(jié)AE并延長,交邊BC于點(diǎn)F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com