【題目】已知:如圖,直線y=-x+12分別交x軸、y軸于A、B點(diǎn),將△AOB折疊,使A點(diǎn)恰好落在OB的中點(diǎn)C處,折痕為DE.

(1)求AE的長(zhǎng)及sin∠BEC的值;

(2)求△CDE的面積.

【答案】(1)5,sin∠BEC=;(2)

【解析】

(1)如圖,作CFBEF點(diǎn),由函數(shù)解析式可得點(diǎn)B,點(diǎn)A坐標(biāo),繼而可得∠A=B=45°,再根據(jù)中點(diǎn)的定義以及等腰直角三角形的性質(zhì)可得OC=BC=6,CF=BF=3

設(shè)AE=CE=x,則EF=AB-BF-AE=12-3-x=9-x,在RtCEF中,利用勾股定理求出x的值即可求得答案;

(2)如圖,過(guò)點(diǎn)EEMOA于點(diǎn)M,根據(jù)三角形面積公式則可得SCDE=SAED=AD×AE,設(shè)AD=y,則CD=y,OD=12-y,在RtOCD中,利用勾股定理求出y,繼而可求得答案.

1)如圖,作CFBEF點(diǎn),

由函數(shù)解析式可得點(diǎn)B(0,12),點(diǎn)A(12,0),A=B=45°,

又∵點(diǎn)COB中點(diǎn),

OC=BC=6,CF=BF=3,

設(shè)AE=CE=x,則EF=AB-BF-AE=12-3-x=9-x,

RtCEF中,CE2=CF2+EF2,即x2=(9-x)2+(32,

解得:x=5

故可得sinBEC=,AE=5;

(2)如圖,過(guò)點(diǎn)EEMOA于點(diǎn)M,

SCDE=SAED=ADEM=AD×AEsinEAM=ADAE×sin45°=AD×AE,

設(shè)AD=y,則CD=y,OD=12-y,

RtOCD中,OC2+OD2=CD2,即62+(12-y)2=y2,

解得:y=,即AD=,

SCDE=SAED=AD×AE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ACB90°,sinABC8,點(diǎn)DAB的中點(diǎn),過(guò)點(diǎn)BCD的垂線,垂足為點(diǎn)E.

(1)求線段CD的長(zhǎng);

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)C是圓上任意一點(diǎn),點(diǎn)DAC中點(diǎn),ODAC于點(diǎn)EBDAC于點(diǎn)F,若BF1.25DF,則tanABD的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC12,BC5,將△ABCAB上的點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△A'B'C',連結(jié)BC'.若BC'A'B',則OB的值為( )

A. B. 5C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接正三角形,點(diǎn)P在劣弧BC上(不與點(diǎn)B,C重合).

1)如圖1,若PA是⊙O的直徑,則PA______PB+PC(請(qǐng)?zhí)?/span>,“=”

2)如圖2,若PA不是⊙O的直徑,那么(1)中的結(jié)論是否仍成立?如果不成立,請(qǐng)說(shuō)明理由:如果成立,請(qǐng)給出證明.

3)如圖3,若四邊形ACPB的面積是16

①求PA的長(zhǎng);

②設(shè)y=SPCB+SPCA,求當(dāng)PC為何值時(shí),y的值最大?并直接寫(xiě)出此時(shí)⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,PBA延長(zhǎng)線上一點(diǎn),CGO的弦PCAABCCGAB,垂足為D

1)求證:PCO的切線;

2)求證:;

3)過(guò)點(diǎn)AAEPCO于點(diǎn)E,交CD于點(diǎn)F,連接BE,若sinP,CF5,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿(mǎn)足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫(xiě)出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買(mǎi)一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買(mǎi)十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買(mǎi)隊(duì)服超過(guò)80套,則購(gòu)買(mǎi)足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?

(2)若城區(qū)四校聯(lián)合購(gòu)買(mǎi)100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)裝備所花的費(fèi)用;

(3)假如你是本次購(gòu)買(mǎi)任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買(mǎi)比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有長(zhǎng)為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度a10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式及x值的取值范圍;

2)要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?

3)當(dāng)AB的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案