精英家教網(wǎng)已知,P為等邊三角形內(nèi)一點(diǎn),且BP=3,PC=4,將BP繞點(diǎn)B順時針旋轉(zhuǎn)60°至BP’的位置.
(1)試判斷△BPP’的形狀,并說明理由;
(2)若∠BPC=150°,求PA.
分析:由已知BP繞點(diǎn)B順時針旋轉(zhuǎn)60°至BP′,運(yùn)用△ABC是等邊三角形聯(lián)想:AB繞點(diǎn)B順時針旋轉(zhuǎn)60°至BC,問題轉(zhuǎn)化為將△ABP繞點(diǎn)B順時針旋轉(zhuǎn)60°至△CBP′,運(yùn)用旋轉(zhuǎn)的性質(zhì)解題.
解答:解:(1)△BPP’是等邊三角形.
理由:∵BP繞點(diǎn)B順時針旋轉(zhuǎn)60°至BP′,
∴BP=BP′,∠PBP=60°;
∴△BPP′是等邊三角形.

(2)∵△BPP′是等邊三角形,
∴∠BPP′=60°,PP'=BP=3,∠P′PC=∠BPC-∠BPP=150-60°=90°;
在Rt△P'′PC中,由勾股定理得P′C=
P′P2+PC2
=5,
∴PA=P′C=5.
點(diǎn)評:本題考查旋轉(zhuǎn)的性質(zhì)--旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知,△ABC為等邊三角形,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時,
求證:∠ADB=∠AFC;②請直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長線上時,其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關(guān)系,并寫出證明過程;
(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長線上時,且點(diǎn)A、F分別在直線BC的異側(cè),其他條件不變,請補(bǔ)全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

說理填空題:如圖,EC=EB,∠CDA=120°,DF∥BE,且DF平分∠CDA,試說明AD與BC平行的理由.
精英家教網(wǎng)解:∵DF平分∠CDA,∠CDA=120°(已知)
∴∠FDC=
12
∠=
 
,
∵DF∥BE,(已知),
∴∠FDC=∠
 
=
 
°
 

又∵EC=EB,(已知)
∴△BCE為等邊三角形.
 

∴∠C=°
 

∵∠CDA=120°(已知)
∴∠C+∠CDA=180°
∴AD∥BC
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC為等邊三角形,邊長為2cm,求等邊△ABC的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC為等邊三角形,點(diǎn)M是射線BC上任意一點(diǎn),點(diǎn)N是射線CA上任意一點(diǎn),且BM=CN,直線BN與AM相交于Q點(diǎn)
(1)觀察圖中是否有全等三角形?若有,直接寫出:
△ABM≌△BCN
△ABM≌△BCN
;(寫出一對即可)
(2)求∠BQM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC為等邊三角形,D,E,F(xiàn)分別是AB,BC,CA上的點(diǎn),且AD:DB=BE:EC=CF:FA.△ABC∽
△DEF
△DEF

查看答案和解析>>

同步練習(xí)冊答案