三角形內(nèi)角和定理:三角形的三個內(nèi)角的和等于
180
180
度.
推論1:三角形的一個外角等于和它不相鄰的
兩個內(nèi)角的和
兩個內(nèi)角的和

推論2:三角形的一個外角大于任何一個和它
不相鄰的內(nèi)角
不相鄰的內(nèi)角
分析:根據(jù)三角形的內(nèi)角和定理與三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和解答.
解答:解:三角形內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度.
推論1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.
推論2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.
故答案為:180;兩個內(nèi)角的和;不相鄰的內(nèi)角.
點評:本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),是基礎題,需要熟記.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、數(shù)學大師陳省身于2004年12月3日在天津逝世,陳省身教授在微分幾何等領域做出了杰出的貢獻,是獲得沃爾夫獎的惟一華人,他曾經(jīng)指出,平面幾何中有兩個重要定理,一個是勾股定理,另一個是三角形內(nèi)角和定理,后者表明平面三角形可以千變?nèi)f化,但是三個內(nèi)角的和是不變量,下列幾個關于不變量的敘述:
(1)邊長確定的平行四邊形ABCD,當A變化時,其任意一組對角之和是不變的;
(2)當多邊形的邊數(shù)不斷增加時,它的外角和不變;
(3)當△ABC繞頂點A旋轉(zhuǎn)時,△ABC各內(nèi)角的大小不變;
(4)在放大鏡下觀察,含角α的圖形放大時,角α的大小不變;
(5)當圓的半徑變化時,圓的周長與半徑的比值不變;
(6)當圓的半徑變化時,圓的周長與面積的比值不變.
其中錯誤的敘述有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

證明三角形內(nèi)角和定理:三角形的三個內(nèi)角的和等于180°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用反證法證明(填空):
兩條直線被第三條直線所截.如果同旁內(nèi)角互補,那么這兩條直線平行.
已知:如圖,直線l1,l2被l3所截,∠1+∠2=180°.
求證:l1
l2
證明:假設l1
不平行
不平行
l2,即l1與l2交與相交于一點P.
則∠1+∠2+∠P
=
=
180°
(三角形內(nèi)角和定理)
(三角形內(nèi)角和定理)

所以∠1+∠2
180°,這與
已知
已知
矛盾,故
假設
假設
不成立.
所以
l1∥l2
l1∥l2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某校七年級數(shù)學興趣小組對“三角形內(nèi)角或外角平分線的夾角與第三個內(nèi)角的數(shù)量關系”進行了探究.

(1)如圖1,△ABC兩內(nèi)角∠ABC與∠ACB的平分線交于點E.則∠BEC=90°+
1
2
∠A.
(閱讀下面證明過程,并填空.)
證明:∵BE、CE分別平分∠ABC和∠ACB,
∴∠EBC=
1
2
∠ABC,∠ECB=
1
2
∠ACB(角平分線的定義)
∴∠BEC=180°-(∠EBC+∠ECB)(
三角形內(nèi)角和定理
三角形內(nèi)角和定理

=180°-(
1
2
∠ABC+
1
2
∠ACB
)=180°-
1
2
(∠ABC+∠ACB)
=180°-
1
2
(180°-∠A)
=
180°-90°+
1
2
∠A
180°-90°+
1
2
∠A
=90°+
1
2
∠A

(2)如圖2,△ABC的內(nèi)角∠ABC的平分線與△ABC的外角∠ACM的平分線交于點E.
請你寫出∠BEC與∠A的數(shù)量關系,并證明.
答:∠BEC與∠A的數(shù)量關系式:
∠BEC=
1
2
∠A
∠BEC=
1
2
∠A

證明:
如下
如下

(3)如圖3,△ABC的兩外角∠CBD與∠BCF的平分線交于點E,請你直接寫出∠BEC與∠A的數(shù)量關系,不需證明.

查看答案和解析>>

同步練習冊答案