如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn)為,B(5,0),M為等腰梯形OBCD底邊OB上一點(diǎn),OD=BC=2,∠DMC=∠DOB=60°.
(1)求直線CB的解析式;
(2)求點(diǎn)M的坐標(biāo);
(3)∠DMC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)α (30°<α<60°)后,得到∠D1MC1(點(diǎn)D1,C1依次與點(diǎn)D,C對應(yīng)),射線MD1交直線DC于點(diǎn)E,射線MC1交直線CB于點(diǎn)F ,設(shè)DE=m,BF=n .求m與 n的函數(shù)關(guān)系式.
(1)y=(2) M (1,0)或(4,0)。3)m=
【解析】(1)BC解析式:y= (2) 略證:△ODM∽△BMC 設(shè)OM=x,2×2=x(5-x), x=1或4, M (1,0)或(4,0)
(3)當(dāng)M (1,0)時(shí),△DME∽△CMF,
CF=2+n,DE=m,∴2+n=2m ,即m=1+
當(dāng)M(4 ,0) 時(shí) ∴m=2(2-n),即m=4-2n
(1)由已知求得C點(diǎn)坐標(biāo),根據(jù)待定系數(shù)法求得直線CB的解析式
(2)先證明△ODM∽△BMC.得 ,所以O(shè)D•BC=BM•OM.設(shè)OM=x,則BM=5-x,得2×2=x(5-x),解得x的值,即可求得M點(diǎn)坐標(biāo);
(3)(Ⅰ)當(dāng)M點(diǎn)坐標(biāo)為(1,0)時(shí),如圖2,OM=1,BM=4.先求得DME∽△CMF,所以 ,可得CF=2DE.所以2-n=2m,即m=.(Ⅱ)當(dāng)M點(diǎn)坐標(biāo)為(4,0)時(shí),OM=4,由OM<3,得出不合題意,舍去.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com