【題目】某數(shù)學(xué)課外活動小組的同學(xué).利用所學(xué)的數(shù)學(xué)知識,測底部可以到達的學(xué)校操場上的旗桿AB高度,他們采用了如下兩種方法:
方法1:在地面上選一點C,測得CB為40米,用高為1.6米的測角儀在C處測得旗桿頂部A的仰角為28°;
方法2:在相同時刻測得旗桿AB的影長為17.15米,又測得已有的2米高的竹桿的影長為1.5米.
你認為這兩種方法可行嗎?若可行,請你任選一種方法算出旗桿高度(精確到0.1米)若不可行,自己另設(shè)計一種測量方法(旗桿頂端不能到達),算出旗桿高度(結(jié)果可用字母表示)
【答案】可行,旗桿高度約為22.9米.
【解析】
方法1:在直角三角形AED中,利用BC的長和已知的角的度數(shù),利用正切函數(shù)可求得AB的長.
方法2:根據(jù)物高與影長的關(guān)系,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題.
解:方法1:由題意則DE=BC,即DE=40米.
在直角△ADE中,∠ADE=28°,
AE=DEtan28°=40tan28°(米).
則AB=AE+EB=40tan28°+1.6(米).
答:旗桿高度為(40tan28°+1.6)米.
方法2:∵物高與影長成比例,
∴旗桿的高度:17.15=2:1.5,
∴旗桿的高度=34.3÷1.5≈22.9米.
答:旗桿高度約為22.9米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)放假期間,小明和小華準備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為 .
(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,點B的坐標為(-4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設(shè)點P運動的時間為t(s).
(1)∠PBD的度數(shù)為 ,點D的坐標為 (用t表示);
(2)當(dāng)t為何值時,△PBE為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程.
已知:直線和直線外一點.
求作:直線的垂線,使它經(jīng)過.
作法:如圖2.
(1)在直線上取一點,連接;
(2)分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點,連接交于點;
(3)以點為圓心,為半徑作圓,交直線于點(異于點),作直線.所以直線就是所求作的垂線.
請你寫出上述作垂線的依據(jù):______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的正方形在平面直角坐標系中的位置如圖所示,點是邊的中點,連接,點在第一象限,且,.以直線為對稱軸的拋物線過,兩點.
(1)求拋物線的解析式;
(2)點從點出發(fā),沿射線每秒1個單位長度的速度運動,運動時間為秒.過點作于點,當(dāng)為何值時,以點,,為頂點的三角形與相似?
(3)點為直線上一動點,點為拋物線上一動點,是否存在點,,使得以點,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,長方形ABCD(每個內(nèi)角都是90°)的頂點的坐標分別是A(0,m),B(n,0),(m>n>0),點E在AD上,AE=AB,點F在y軸上,OF=OB,BF的延長線與DA的延長線交于點M,EF與AB交于點N.
(1)試求點E的坐標(用含m,n的式子表示);
(2)求證:AM=AN;
(3)若AB=CD=12cm,BC=20cm,動點P從B出發(fā),以2cm/s的速度沿BC向C運動的同時,動點Q從C出發(fā),以vcm/s的速度沿CD向D運動,是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請求出v值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東坡商貿(mào)公司購進某種水果成本為20元/,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(元/)與時間(天)之間的函數(shù)關(guān)系式,為整數(shù),且其日銷售量()與時間(天)的關(guān)系如下表:
時間(天) | 1 | 3 | 6 | 10 | 20 | … |
日銷售量() | 118 | 114 | 108 | 100 | 80 | … |
(1)已知與之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量;
(2)哪一天的銷售利潤最大?最大日銷售利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對角線AC于點E.
(1)線段AE= ;
(2)如圖2,以點A為端點作∠DAM=30°,交CD于點M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點A逆時針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過程中AD與⊙O交于點F.
①當(dāng)α=30°時,請求出線段AF的長;
②當(dāng)α=60°時,求出線段AF的長;判斷此時DM與⊙O的位置關(guān)系,并說明理由;
③當(dāng)α= °時,DM與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AC為對角線,延長CD至點E使CE=CA,連接AE.F為AB上的一點,且BF=DE,連接FC.
(1)若DE=1,CF=,求CD的長;
(2)如圖2,點G為線段AE的中點,連接BG交AC于H,若∠BHC+∠ABG=60°,求證:AF+CE=AC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com